cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247583 Primes extracted from a pseudo-Collatz cycle '3*n-1' by consecutive arithmetic derivatives, here with starting point prime(99147) = 1287511.

This page as a plain text file.
%I A247583 #19 Sep 26 2016 21:06:52
%S A247583 1287511,1448449,2172673,37122139,44596859,91644073,28996757,3440533,
%T A247583 3870599,4354423,3265817,7348087,8266597,9299921,20924821,31387231,
%U A247583 17655317,19862231,22345009,33517513,50276269,75414403,21499669,34438309,55163509,9817919
%N A247583 Primes extracted from a pseudo-Collatz cycle '3*n-1' by consecutive arithmetic derivatives, here with starting point prime(99147) = 1287511.
%C A247583 a(n) is defined as a sequence of subsequences of prime numbers extracted from the pseudo-Collatz cycle '3*n-1' , C = c(z) by consecutive arithmetic derivatives AD(i) of C. The starting point here is c(1) = prime(99147) = 1287511, the length is z = 560. The arithmetic derivative AD(i), i >=0 is a tool to select prime numbers out of a given sequence of integers, because the AD of prime numbers is 1.
%C A247583 Let AD(i,C(k)) be the i-th AD of the AD of C(k), then AD(1,C(k)) is the first AD of C(k) with AD(0,C(k)) = C(k). So a(n) = AD(i,C(k)) is a sequence of consecutive values of AD(i) of C(k).
%C A247583 The selection of the prime numbers can be made under the conditions:
%C A247583 (1) If AD(i+1,C(k)) = 1 then AD(i,C(k)) is prime.
%C A247583 (2) If AD(i,C(k)) mod 2 = 1 and AD(i,C(k)) > AD(i+1,C(k)) then AD(i,C(k)) is uneven and is (probably) convergent to a prime number.
%C A247583 (3) If AD(i,C(k)) mod 2 = 0 and AD(i,C(k)) < AD(i+1,C(k)) then AD(i) is even and (probably) divergent.
%C A247583 If any of the conditions 1 - 3 are not satisfied then the search for primes by AD in that sequence is hopeless.
%C A247583 In Tables 1 and 3, i is the number of the AD, np the counting number of primes of the AD and a(n) the last prime number of the i'th AD.
%C A247583 Table 1
%C A247583 i      0    1    2      3      4     5       6       7        8             9        10   ...
%C A247583 np     65   33   27     19     10    10      1       3        4             2        0    ...
%C A247583 n      65   98   125    144    154   164     165     168      172           174
%C A247583 a(n)   17   19   103    71     5     7       101     271      967721        5
%H A247583 Freimut Marschner, <a href="/A247583/b247583.txt">Table of n, a(n) for n = 1..174</a>
%e A247583 Example for starting point prime(7) = 17. This pseudo-Collatz cycle is repetitive (see A246007).
%e A247583 Table 2
%e A247583 Number         1    2  3   4   5     6   7     8   9  10  11 12   13 14   15   16 17  18  19
%e A247583 Sequence      17   50 25  74  37   110  55   164  82  41 122 61  182 91  272  136 68  34  17
%e A247583 Primes( AD)   17   37 41  61  17    43 131    19   7
%e A247583 Table 3
%e A247583 i        0    1  2  3 ...
%e A247583 np       5    3  1  0 ...
%e A247583 n        5    8  9
%e A247583 a(n)    17   19  7
%Y A247583 Cf. A246007 (length of pseudo-Collatz cycles '3*n - 1' of prime numbers).
%K A247583 sign
%O A247583 1,1
%A A247583 _Freimut Marschner_, Sep 21 2014