A247586 Number of acute triangles with integer sides less than or equal to n.
1, 3, 6, 11, 17, 25, 36, 49, 64, 81, 102, 127, 154, 185, 219, 258, 301, 349, 401, 457, 520, 587, 660, 740, 824, 914, 1010, 1114, 1225, 1342, 1468, 1600, 1740, 1887, 2041, 2206, 2378, 2561, 2750, 2948
Offset: 1
Keywords
Examples
a(2) = 3 because there are 3 acute triangles with integer sides less than or equal to 2: (1,1,1); (1,2,2); (2,2,2).
Links
- Vladimir Letsko, Mathematical Marathon, problem 192 (in Russian).
Programs
-
Maple
tr_a:=proc(n) local a,b,c,t,d;t:=0: for a to n do for b from a to n do for c from b to min(a+b-1,n) do d:=a^2+b^2-c^2: if d>0 then t:=t+1 fi od od od; [n,t]; end;
-
Mathematica
a[n_] := Module[{a, b, c, d, t = 0}, Do[d = a^2 + b^2 - c^2; If[d>0, t++], {a, n}, {b, a, n}, {c, b, Min[a+b-1, n]}]; t]; Array[a, 40] (* Jean-François Alcover, Jun 19 2019, from Maple *)
-
Python
import itertools def A247586(n): I = itertools.combinations_with_replacement(range(1,n+1),3) F = filter(lambda c: c[0]**2 + c[1]**2 > c[2]**2, I) return len(list(F)) print([A247586(n) for n in range(41)]) # Peter Luschny, Sep 22 2014