cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247586 Number of acute triangles with integer sides less than or equal to n.

Original entry on oeis.org

1, 3, 6, 11, 17, 25, 36, 49, 64, 81, 102, 127, 154, 185, 219, 258, 301, 349, 401, 457, 520, 587, 660, 740, 824, 914, 1010, 1114, 1225, 1342, 1468, 1600, 1740, 1887, 2041, 2206, 2378, 2561, 2750, 2948
Offset: 1

Views

Author

Vladimir Letsko, Sep 20 2014

Keywords

Examples

			a(2) = 3 because there are 3 acute triangles with integer sides less than or equal to 2: (1,1,1); (1,2,2); (2,2,2).
		

Crossrefs

Programs

  • Maple
    tr_a:=proc(n) local a,b,c,t,d;t:=0:
      for a to n do
      for b from a to n do
      for c from b to min(a+b-1,n) do
      d:=a^2+b^2-c^2:
      if d>0 then t:=t+1 fi
      od od od;
      [n,t]; end;
  • Mathematica
    a[n_] := Module[{a, b, c, d, t = 0}, Do[d = a^2 + b^2 - c^2; If[d>0, t++], {a, n}, {b, a, n}, {c, b, Min[a+b-1, n]}]; t]; Array[a, 40] (* Jean-François Alcover, Jun 19 2019, from Maple *)
  • Python
    import itertools
    def A247586(n):
        I = itertools.combinations_with_replacement(range(1,n+1),3)
        F = filter(lambda c: c[0]**2 + c[1]**2 > c[2]**2, I)
        return len(list(F))
    print([A247586(n) for n in range(41)]) # Peter Luschny, Sep 22 2014