A247587 Number of obtuse triangles with integer sides at most n.
0, 0, 1, 2, 4, 8, 13, 20, 30, 42, 57, 74, 95, 120, 149, 182, 219, 261, 309, 362, 420, 485, 556, 632, 715, 806, 906, 1012, 1125, 1247, 1377, 1517, 1666, 1824, 1993, 2170, 2358, 2555, 2765, 2986
Offset: 1
Keywords
Examples
a(4) = 2 because there are 2 obtuse triangles with integer sides less than or equal to 4: (2,2,3); (2,3,4).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Vladimir Letsko, Mathematical Marathon, problem 192 (in Russian).
Programs
-
Maple
tr_o:=proc(n) local a, b, c, t, d; t:=0: for a to n do for b from a to n do for c from b to min(a+b-1, n) do d:=a^2+b^2-c^2: if d<0 then t:=t+1 fi od od od; [n, t]; end;
-
PARI
a(n)=sum(a=2,n-1,sum(b=a,n-1,max(0,min(n,a+b-1)-sqrtint(a^2+b^2)))) \\ Charles R Greathouse IV, Sep 20 2014
-
PARI
obtuse(n)=sum(a=2,n-1, max(0, sqrtint(n^2-1-a^2)-max(a,n-a+1)+1)) s=0; vector(100,n, s+=obtuse(n)) \\ Charles R Greathouse IV, Sep 20 2014