A247604 Least integer m > 0 with pi(m*n) = sigma(m+n), where pi(.) and sigma(.) are given by A000720 and A000203.
18, 11, 360, 251, 168, 36, 6, 285, 1185, 792, 29, 11, 245078, 5, 1869, 46074, 573, 42863, 11, 5, 8129, 60806, 1443, 452, 15, 39298437, 386891, 1041920, 1290489, 17630, 35569, 10, 8174777, 3152500, 4291325, 57880072, 55991485, 127358, 93462807, 93314912
Offset: 5
Keywords
Examples
a(5) = 18 since pi(5*18) = 24 = sigma(5+18).
Links
- Zhi-Wei Sun and Hiroaki Yamanouchi, Table of n, a(n) for n = 5..52 (terms a(5)-a(40) from Zhi-Wei Sun)
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1;Label[aa];If[PrimePi[n*m]==DivisorSigma[1,m+n],Print[n," ",m];Goto[bb]];m=m+1;Goto[aa]; Label[bb];Continue,{n,5,40}]
Extensions
a(41)-a(44) from Hiroaki Yamanouchi, Oct 04 2014
Comments