This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247608 #35 Jan 26 2025 20:27:48 %S A247608 1,7,28,84,195,381,662,1058,1589,2275,3136,4192,5463,6969,8730,10766, %T A247608 13097,15743,18724,22060,25771,29877,34398,39354,44765,50651,57032, %U A247608 63928,71359,79345,87906,97062,106833,117239,128300,140036,152467,165613,179494 %N A247608 a(n) = Sum_{k=0..3} binomial(6,k)*binomial(n,k). %H A247608 Vincenzo Librandi, <a href="/A247608/b247608.txt">Table of n, a(n) for n = 0..1000</a> %H A247608 C. Krattenthaler, <a href="http://www.mat.univie.ac.at/~slc/wpapers/s42kratt.html">Advanced determinant calculus</a> Séminaire Lotharingien de Combinatoire, B42q (1999), 67 pp, (see p. 54). %H A247608 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A247608 G.f.: (1+3*x+6*x^2+10*x^3)/(1-x)^4. %F A247608 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). %F A247608 a(n) = (6+31*n-15*n^2+20*n^3)/6. %F A247608 a(n) = 1+6*Binomial(n,1)+15*Binomial(n,2)+20*Binomial(n,3). %t A247608 Table[(6 + 31 n - 15 n^2 + 20 n^3)/6, {n, 0, 50}] (* or *) CoefficientList[Series[(1 + 3 x + 6 x^2 + 10 x^3)/(1-x)^4,{x, 0, 50}], x] %o A247608 (Magma) [(6+31*n-15*n^2+20*n^3)/6: n in [0..40]]; %o A247608 (Magma) [1+6*Binomial(n,1)+15*Binomial(n,2)+20*Binomial(n,3): n in [0..40]]; %o A247608 (Magma) I:=[1, 7, 28, 84]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; %o A247608 (PARI) Vec((1+3*x+6*x^2+10*x^3)/(1-x)^4 + O (x^50)) \\ _Michel Marcus_, Sep 22 2014 %o A247608 (Sage) m=3; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # _Bruno Berselli_, Sep 22 2014 %Y A247608 Cf. A005408, A056108. %K A247608 nonn,easy %O A247608 0,2 %A A247608 _Vincenzo Librandi_, Sep 22 2014