A247618 Start with a single square; at n-th generation add a square at each expandable vertex; a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)
1, 5, 17, 45, 105, 229, 481, 989, 2009, 4053, 8145, 16333, 32713, 65477, 131009, 262077, 524217, 1048501, 2097073, 4194221, 8388521, 16777125, 33554337, 67108765, 134217625, 268435349, 536870801, 1073741709, 2147483529, 4294967173, 8589934465
Offset: 0
Links
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
PARI
a(n) = if (n<1,1,4*(2^n-1)+a(n-1)) for (n=0,50,print1(a(n),", "))
-
PARI
Vec(-(2*x^2+x+1) / ((x-1)^2*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 21 2014
Formula
a(0) = 1, for n >= 1, a(n) = 4*A000225(n) + a(n-1).
From Colin Barker, Sep 21 2014: (Start)
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3).
a(n) = (-7+2^(3+n)-4*n).
G.f.: -(2*x^2+x+1) / ((x-1)^2*(2*x-1)).
(End)
Comments