A247619 Start with a single pentagon; at n-th generation add a pentagon at each expandable vertex; a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)
1, 6, 16, 36, 66, 116, 186, 296, 446, 676, 986, 1456, 2086, 3036, 4306, 6216, 8766, 12596, 17706, 25376, 35606, 50956, 71426, 102136, 143086, 204516, 286426, 409296, 573126, 818876, 1146546, 1638056, 2293406, 3276436, 4587146, 6553216, 9174646, 13106796
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2).
Programs
-
Mathematica
LinearRecurrence[{2, 1, -4, 2}, {1, 6, 16, 36}, 50] (* Paolo Xausa, Aug 21 2024 *)
-
PARI
{ b=0;a=1;print1(1,", "); for (n=0,50, b=b+2^floor(n/2); a=a+5*b; print1(a,", ") ) }
-
PARI
Vec(-(2*x^3+3*x^2+4*x+1)/((x-1)^2*(2*x^2-1)) + O(x^100)) \\ Colin Barker, Sep 21 2014
Formula
a(0) = 1, for n >= 1, a(n) = 5*A027383(n-1) + a(n-1). [Offset corrected by Peter Munn, Apr 20 2023]
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+2*a(n-4). G.f.: -(2*x^3+3*x^2+4*x+1) / ((x-1)^2*(2*x^2-1)). - Colin Barker, Sep 21 2014
Extensions
More terms from Colin Barker, Sep 21 2014
Comments