A247620 Start with a single hexagon; at n-th generation add a hexagon at each expandable vertex; a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)
1, 7, 25, 67, 157, 343, 721, 1483, 3013, 6079, 12217, 24499, 49069, 98215, 196513, 393115, 786325, 1572751, 3145609, 6291331, 12582781, 25165687, 50331505, 100663147, 201326437, 402653023, 805306201, 1610612563, 3221225293, 6442450759, 12884901697
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Mathematica
A247620[n_] := 3*2^(n+2) - 6*n - 11; Array[A247620, 50, 0] (* or *) LinearRecurrence[{4, -5, 2}, {1, 7, 25}, 50] (* Paolo Xausa, Aug 22 2024 *)
-
PARI
a(n) = if (n<1,1,6*(2^n-1)+a(n-1)) for (n=0,50,print1(a(n),", "))
-
PARI
Vec(-(x+1)*(2*x+1)/((x-1)^2*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 21 2014
Formula
a(0) = 1, for n >= 1, a(n) = 6*A000225(n) + a(n-1).
From Colin Barker, Sep 21 2014: (Start)
a(n) = (-11+3*2^(2+n)-6*n).
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3).
G.f.: -(x+1)*(2*x+1) / ((x-1)^2*(2*x-1)).
(End)
Extensions
More terms from Colin Barker, Sep 21 2014
Comments