cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A247623 Number of paths from (0,0) to the line x = n, each segment given by a vector (1,1), (1,-1), or (2,0), not crossing the x-axis, and including no horizontal segment on the x-axis.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 44, 96, 225, 501, 1182, 2668, 6321, 14407, 34232, 78592, 187137, 432073, 1030490, 2390004, 5707449, 13286043, 31760676, 74160672, 177435297, 415382397, 994551222, 2333445468, 5590402785, 13141557519, 31500824304, 74174404608, 177880832001
Offset: 0

Views

Author

Clark Kimberling, Sep 21 2014

Keywords

Comments

a(n) = sum of numbers in row n of A247622.

Examples

			First 9 rows of A247622:
1
0 ... 1
1 ... 0 ... 1
0 ... 3 ... 0 ... 1
3 ... 0 ... 5 ... 0 ... 1
0 ... 11 .. 0 ... 7 ... 0 ...1
11 .. 0 ... 23 .. 0 ... 9 ... 0 ... 1
0 ... 45 .. 0 ... 39 .. 0 ... 11 .. 0 ... 1
45 .. 0 ... 107 . 0 ... 59 .. 0 ... 13 .. 0 ... 1
a(5) = 0 + 11 + 0 + 7 + 0 + 1 = 19
		

Crossrefs

Cf. A247622.

Programs

  • Mathematica
    t[0, 0] = 1; t[1, 1] = 1; t[2, 0] = 1; t[2, 2] = 1; t[n_, k_] := t[n, k] = If[n >= 2 && k >= 1, t[n - 1, k - 1] + t[n - 1, k + 1] + t[n - 2, k], 0]; t[n_, 0] := t[n, 0] = t[n - 1, 1]; u = Table[t[n, k], {n, 0, 16}, {k, 0, n}];
    v = Flatten[u] (* A247622 sequence *)
    TableForm[u]   (* A247622 array *)
    Map[Total, u]  (* A247623 *)

Formula

Conjecture: (n+1)*a(n) +(n-3)*a(n-1) +2*(-3*n+2)*a(n-2) +2*(-3*n+8)*a(n-3) +(n-5)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Sep 23 2014
Showing 1-1 of 1 results.