This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247631 #9 Sep 26 2014 21:32:43 %S A247631 8,9,10,11,14,20,24,28,37,47,51,54,57,58,59,62,63,69,81,82,85,92,106, %T A247631 121,128,129,147,148,149,150,161,162,165,168,181,182,183,186,190,200, %U A247631 201,214,217,218,219,225,226,227,228,232,236,241,245,248,249,258 %N A247631 Numbers k such that d(r,k) = 0 and d(s,k) = 0, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part. %C A247631 Every positive integer lies in exactly one of these: A247631, A247632, A247633, A247634. Deleting the initial 1 from the representation of r gives the representation of s. %H A247631 Clark Kimberling, <a href="/A247631/b247631.txt">Table of n, a(n) for n = 1..1181</a> %e A247631 r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ... %e A247631 s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ... %e A247631 so that a(1) = 8 and a(2) = 9. %t A247631 z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]]; %t A247631 u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] %t A247631 v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] %t A247631 t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; %t A247631 t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; %t A247631 t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; %t A247631 t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; %t A247631 Flatten[Position[t1, 1]] (* A247631 *) %t A247631 Flatten[Position[t2, 1]] (* A247632 *) %t A247631 Flatten[Position[t3, 1]] (* A247633 *) %t A247631 Flatten[Position[t4, 1]] (* A247634 *) %Y A247631 Cf. A247632, A247633, A247634, A247519. %K A247631 nonn,easy,base %O A247631 1,1 %A A247631 _Clark Kimberling_, Sep 23 2014