A247632 Numbers k such that d(r,k) = 0 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
1, 4, 6, 12, 15, 21, 25, 29, 38, 42, 48, 52, 55, 60, 64, 66, 70, 72, 78, 83, 86, 89, 93, 96, 100, 102, 104, 107, 109, 111, 113, 119, 122, 130, 134, 136, 139, 144, 151, 153, 157, 159, 163, 166, 169, 173, 177, 179, 184, 187, 191, 195, 198, 202, 204, 209, 211
Offset: 1
Examples
r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ... s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ... so that a(1) = 1 and a(2) = 4.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1097
Programs
-
Mathematica
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A247631 *) Flatten[Position[t2, 1]] (* A247632 *) Flatten[Position[t3, 1]] (* A247633 *) Flatten[Position[t4, 1]] (* A247634 *)
Comments