A247634 Numbers k such that d(r,k) = 1 and d(s,k) = 1, where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
2, 16, 17, 18, 22, 26, 30, 31, 32, 33, 34, 35, 39, 40, 43, 44, 45, 49, 67, 73, 74, 75, 76, 79, 87, 90, 94, 97, 98, 114, 115, 116, 117, 123, 124, 125, 126, 131, 132, 137, 140, 141, 142, 145, 154, 155, 170, 171, 174, 175, 188, 192, 193, 196, 205, 206, 207, 212
Offset: 1
Examples
r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ... s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ... so that a(1) = 1 and a(2) = 4.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1122
Programs
-
Mathematica
z = 400; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]] v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]] t1 = Table[If[u[[n]] == 0 && v[[n]] == 0, 1, 0], {n, 1, z}]; t2 = Table[If[u[[n]] == 0 && v[[n]] == 1, 1, 0], {n, 1, z}]; t3 = Table[If[u[[n]] == 1 && v[[n]] == 0, 1, 0], {n, 1, z}]; t4 = Table[If[u[[n]] == 1 && v[[n]] == 1, 1, 0], {n, 1, z}]; Flatten[Position[t1, 1]] (* A247631 *) Flatten[Position[t2, 1]] (* A247632 *) Flatten[Position[t3, 1]] (* A247633 *) Flatten[Position[t4, 1]] (* A247634 *)
Comments