A247636 Numbers k such that d(r,k) != d(s,k), where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {sqrt(8)}, and { } = fractional part.
1, 3, 4, 5, 6, 7, 12, 13, 15, 19, 21, 23, 25, 27, 29, 36, 38, 41, 42, 46, 48, 50, 52, 53, 55, 56, 60, 61, 64, 65, 66, 68, 70, 71, 72, 77, 78, 80, 83, 84, 86, 88, 89, 91, 93, 95, 96, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 118
Offset: 1
Examples
r has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, ... s has binary digits 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, ... so that a(1) = 1 and a(2) = 3.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 200; r = FractionalPart[Sqrt[2]]; s = FractionalPart[Sqrt[8]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]; v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]; t = Table[If[u[[n]] == v[[n]], 1, 0], {n, 1, z}]; Flatten[Position[t, 1]] (* A247635 *) Flatten[Position[t, 0]] (* A247636 *)
Comments