cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247640 Number of ON cells after n generations of "Odd-Rule" cellular automaton on hexagonal lattice based on 6-celled neighborhood.

Original entry on oeis.org

1, 6, 6, 24, 6, 36, 24, 96, 6, 36, 36, 144, 24, 144, 96, 384, 6, 36, 36, 144, 36, 216, 144, 576, 24, 144, 144, 576, 96, 576, 384, 1536, 6, 36, 36, 144, 36, 216, 144, 576, 36, 216, 216, 864, 144, 864, 576, 2304, 24, 144, 144, 576, 144, 864
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2014

Keywords

Comments

The neighborhood of a cell consists of the six surrounding cells (but not the cell itself). A cell is ON at generation n iff an odd number of its neighbors were ON at the previous generation. We start with one ON cell.
This is the Run Length Transform of the sequence 1, 6, 24, 96, 384, 1536, 6144, 24576, ... (almost certainly A164908, or 1 followed by A002023).
It appears that this is also the sequence corresponding to the odd-rule cellular automaton defined by OddRule 356 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 26 2015

Crossrefs

Programs

  • Maple
    C := f->`if`(type(f,`+`),nops(f),1);
    f := 1/x+x+1/y+y+1/(x*y)+x*y;
    g := n->expand(f^n) mod 2;
    [seq(C(g(n)),n=0..100)];
  • Mathematica
    A247640[n_] := Total[CellularAutomaton[{42, {2, {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}}, {1, 1}}, {{{1}}, 0}, {{{n}}}], 2]; Array[A247640, 54, 0] (* JungHwan Min, Sep 06 2016 *)
    A247640L[n_] := Total[#, 2] & /@ CellularAutomaton[{42, {2, {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}}, {1, 1}}, {{{1}}, 0}, n]; A247640L[53] (* JungHwan Min, Sep 06 2016 *)

Formula

a(n) = number of terms in expansion of f^n mod 2, where f = 1/x+x+1/y+y+1/(x*y)+x*y (mod 2);