This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247649 #55 Feb 10 2023 12:02:27 %S A247649 1,5,5,7,5,17,7,19,5,25,17,19,7,31,19,25,5,25,25,35,17,61,19,71,7,35, %T A247649 31,41,19,71,25,77,5,25,25,35,25,85,35,95,17,85,61,71,19,91,71,77,7, %U A247649 35,35,49,31,107,41,121,19,95,71,85,25,113,77,103 %N A247649 Number of terms in expansion of f^n mod 2, where f = 1/x^2 + 1/x + 1 + x + x^2 mod 2. %C A247649 This is the number of cells that are ON after n generations in a one-dimensional cellular automaton defined by the odd-neighbor rule where the neighborhood consists of 5 contiguous cells. %C A247649 a(n) is also the number of odd entries in row n of A035343. - _Leon Rische_, Feb 02 2023 %H A247649 Chai Wah Wu, <a href="/A247649/b247649.txt">Table of n, a(n) for n = 0..10000</a> %H A247649 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015. %H A247649 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %F A247649 The values of a(n) for n in A247647 (or A247648) determine all the values, as follows. Parse the binary expansion of n into terms from A247647 separated by at least two zeros: m_1 0...0 m_2 0...0 m_3 ... m_r 0...0. Ignore any number (one or more) of trailing zeros. Then a(n) = a(m_1)*a(m_2)*...*a(m_r). For example, n = 37_10 = 100101_2 is parsed into 1.00.101, and so a(37) = a(1)*a(5) = 5*17 = 85. This is a generalization of the Run Length Transform. %e A247649 The first few generations are: %e A247649 ..........X.......... %e A247649 ........XXXXX........ %e A247649 ......X.X.X.X.X...... %e A247649 ....XX..X.X.X..XX.... (f^3) %e A247649 ..X...X...X...X...X.. %e A247649 XXXX.XXX.XXX.XXX.XXXX %e A247649 ... %e A247649 f^3 mod 2 = x^6 + x^5 + x^2 + 1/x^2 + 1/x^5 + 1/x^6 + 1 has 7 terms, so a(3) = 7. %e A247649 From _Omar E. Pol_, Mar 02 2015: (Start) %e A247649 Also, written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins: %e A247649 1; %e A247649 5; %e A247649 5, 7; %e A247649 5,17, 7,19; %e A247649 5,25,17,19, 7,31,19,25; %e A247649 5,25,25,35,17,61,19,71, 7,35,31,41,19,71,25,77; %e A247649 5,25,25,35,25,85,35,95,17,85,61,71,19,91,71,77,7,35,35,49,31,107,41,121,19, ... %e A247649 (End) %e A247649 It follows from the Generalized Run Length Transform result mentioned in the comments that in each row the first quarter of the terms (and no more) are equal to 5 times the beginning of the sequence itself. It cannot be said that the rows converge (in any meaningful sense) to five times the sequence. - _N. J. A. Sloane_, Mar 03 2015 %o A247649 (Python) %o A247649 import sympy %o A247649 from functools import reduce %o A247649 from operator import mul %o A247649 x = sympy.symbols('x') %o A247649 f = 1/x**2+1/x+1+x+x**2 %o A247649 A247649_list, g = [1], 1 %o A247649 for n in range(1,1001): %o A247649 s = [int(d,2) for d in bin(n)[2:].split('00') if d != ''] %o A247649 g = (g*f).expand(modulus=2) %o A247649 if len(s) == 1: %o A247649 A247649_list.append(g.subs(x,1)) %o A247649 else: %o A247649 A247649_list.append(reduce(mul,(A247649_list[d] for d in s))) %o A247649 # _Chai Wah Wu_, Sep 25 2014 %Y A247649 Cf. A071053, A247647, A247648, A253085, A255490. %Y A247649 Partial sums are in A255654. %K A247649 nonn %O A247649 0,2 %A A247649 _N. J. A. Sloane_, Sep 25 2014