A247650 Number of terms in expansion of f^n mod 2, where f = (1/x^2+1/x+1+x+x^2)*(1/y^2+1/y+1+y+y^2) mod 2.
1, 25, 25, 49, 25, 289, 49, 361, 25, 625, 289, 361, 49, 961, 361, 625, 25, 625, 625, 1225, 289, 3721, 361, 5041, 49, 1225, 961, 1681, 361, 5041, 625, 5929, 25, 625, 625, 1225, 625, 7225, 1225, 9025, 289, 7225, 3721, 5041, 361, 8281, 5041, 5929, 49, 1225
Offset: 0
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..200
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
Programs
-
Python
import sympy from operator import mul from functools import reduce x, y = sympy.symbols('x y') f = ((1/x**2+1/x+1+x+x**2)*(1/y**2+1/y+1+y+y**2)).expand(modulus=2) A247650_list, g = [1], 1 for n in range(1, 101): s = [int(d, 2) for d in bin(n)[2:].split('00') if d != ''] g = (g*f).expand(modulus=2) if len(s) == 1: A247650_list.append(g.subs([(x, 1), (y, 1)])) else: A247650_list.append(reduce(mul, (A247650_list[d] for d in s))) # Chai Wah Wu, Sep 25 2014
Formula
The values of a(n) for n in A247647 (or A247648) determine all the values, as follows. Parse the binary expansion of n into terms from A247647 separated by at least two zeros: m_1 0...0 m_2 0...0 m_3 ... m_r 0...0. Ignore any number (one or more) of trailing zeros. Then a(n) = a(m_1)*a(m_2)*...*a(m_r). For example, n = 37_10 = 100101_2 is parsed into 1.00.101, and so a(37) = a(1)*a(5) = 25*289 = 7225. This is a generalization of the Run Length Transform.
Comments