A247666 Number of ON cells after n generations of "Odd-Rule" cellular automaton on hexagonal lattice based on 7-celled neighborhood.
1, 7, 7, 25, 7, 49, 25, 103, 7, 49, 49, 175, 25, 175, 103, 409, 7, 49, 49, 175, 49, 343, 175, 721, 25, 175, 175, 625, 103, 721, 409, 1639, 7, 49, 49, 175, 49, 343, 175, 721, 49, 343, 343, 1225, 175, 1225, 721, 2863, 25, 175, 175, 625
Offset: 0
Keywords
Examples
From _Omar E. Pol_, Jan 29 2015: (Start) May be arranged into blocks of sizes A011782: 1; 7; 7, 25; 7, 49, 25, 103; 7, 49, 49, 175, 25, 175, 103, 409; 7, 49, 49, 175, 49, 343, 175, 721, 25, 175, 175, 625, 103, 721, 409, 1639; 7, 49, 49, 175, 49, 343, 175, 721, 49, 343, 343, 1225, 175, 1225, 721, 2863, 25, 175, 175, 625, ... It appears that right border gives A102900 without repetitions, see Comments section. [This is just a restatement of the fact that this sequence is the run length transform of what is presumably A102900. - _N. J. A. Sloane_, Feb 06 2015] (End) From _Omar E. Pol_, Mar 19 2015: (Start) Also, the sequence can be written as an irregular tetrahedron T(s,r,k) as shown below: 1; .. 7; .. 7; 25; ......... 7, 49; 25; 103; ................... 7, 49, 49, 175; 25, 175; 103; 409; ...................................... 7, 49, 49, 175, 49, 343, 175, 721; 25, 175, 175, 625; 103, 721; 409; 1639; ... Apart from the initial 1, we have that T(s,r,k) = T(s+1,r,k). (End)
Links
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, Illustrations of generations 0 to 4
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
Programs
-
Maple
C := f->`if`(type(f,`+`),nops(f),1); f := 1+1/x+x+1/y+y+1/(x*y)+x*y; g := n->expand(f^n) mod 2; [seq(C(g(n)),n=0..100)];
-
Mathematica
A247666[n_] := Total[CellularAutomaton[{170, {2, {{1, 1, 0}, {1, 1, 1}, {0, 1, 1}}}, {1, 1}}, {{{1}}, 0}, {{{n}}}], 2]; Array[A247666, 52, 0] (* JungHwan Min, Sep 01 2016 *) A247666L[n_] := Total[#, 2] & /@ CellularAutomaton[{170, {2, {{1, 1, 0}, {1, 1, 1}, {0, 1, 1}}}, {1, 1}}, {{{1}}, 0}, n]; A247666L[51] (* JungHwan Min, Sep 01 2016 *)
Formula
a(n) = number of terms in expansion of f^n mod 2, where f = 1+1/x+x+1/y+y+1/(x*y)+x*y (mod 2);
Comments