A247668 Decimal expansion of the coefficient c_v in c_v*log(N), the asymptotic variance of the number of factors in a random factorization of n <= N.
3, 0, 8, 4, 0, 3, 4, 4, 4, 6, 0, 8, 0, 7, 7, 0, 0, 1, 6, 3, 3, 6, 0, 7, 7, 2, 6, 1, 7, 4, 5, 8, 7, 9, 8, 6, 6, 7, 2, 0, 9, 4, 9, 6, 0, 5, 3, 6, 8, 8, 6, 0, 8, 4, 9, 6, 7, 2, 6, 4, 7, 6, 9, 9, 9, 8, 4, 0, 0, 0, 9, 3, 6, 0, 2, 2, 0, 0, 9, 2, 3, 6, 6, 4, 9, 5, 3, 8, 3, 2, 1, 5, 8, 1, 3, 5, 1, 9, 0, 0, 6, 7
Offset: 0
Examples
0.308403444608077001633607726174587986672094960536886...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 37.
Programs
-
Mathematica
digits = 102; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits+5]; cv = (-1/Zeta'[rho])*(Zeta''[rho]/Zeta'[rho]^2 - 1); RealDigits[cv, 10, digits] // First
Formula
c_v = (-1/zeta'(rho))*(zeta''(rho)/zeta'(rho)^2 - 1), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.