cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247674 Decimal expansion of the integral over the square [0,1]x[0,1] of sqrt(1+(x-y)^2) dx dy.

This page as a plain text file.
%I A247674 #20 Sep 08 2022 08:46:09
%S A247674 1,0,7,6,6,3,5,7,3,2,8,9,5,1,7,8,0,0,8,9,6,5,3,7,9,7,5,0,2,4,3,2,2,6,
%T A247674 2,8,2,8,3,8,2,6,9,7,0,3,1,3,5,9,8,6,0,5,3,0,2,7,7,3,5,6,9,5,9,8,9,7,
%U A247674 9,9,6,9,1,4,0,1,3,2,3,7,4,1,5,5,0,2,4,4,3,8,0,4,6,7,7,0,8,8,5,1,9,4,5
%N A247674 Decimal expansion of the integral over the square [0,1]x[0,1] of sqrt(1+(x-y)^2) dx dy.
%C A247674 The average length of chords in a unit square drawn between two points uniformly and independently chosen at random on two opposite sides. - _Amiram Eldar_, Aug 08 2020
%H A247674 G. C. Greubel, <a href="/A247674/b247674.txt">Table of n, a(n) for n = 1..10000</a>
%H A247674 D. H. Bailey and J. M. Borwein, <a href="https://escholarship.org/uc/item/4281090t">Highly Parallel, High-Precision Numerical Integration</a>, Lawrence Berkeley National Laboratory (2005), p. 9.
%H A247674 Philip W. Kuchel and Rodney J. Vaughan, <a href="https://www.jstor.org/stable/2689989">Average lengths of chords in a square</a>, Mathematics Magazine, Vol. 54, No. 5 (1981), pp. 261-269.
%F A247674 Equals 2/3 - sqrt(2)/3 + arcsinh(1).
%F A247674 Equals 2*A244921 + A247674 = (2 + sqrt(2) + 5*log(1+sqrt(2)))/3.
%e A247674 1.076635732895178008965379750243226282838269703135986...
%t A247674 RealDigits[2/3 - Sqrt[2]/3 + ArcSinh[1], 10, 103] // First
%o A247674 (PARI) default(realprecision, 100); (2 + sqrt(2) + 5*log(1+sqrt(2)))/3 \\ _G. C. Greubel_, Aug 31 2018
%o A247674 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (2 + Sqrt(2) + 5*Log(1+Sqrt(2)))/3; // _G. C. Greubel_, Aug 31 2018
%Y A247674 Cf. A244921.
%K A247674 nonn,cons
%O A247674 1,3
%A A247674 _Jean-François Alcover_, Sep 22 2014