This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247687 #24 Jun 27 2021 07:57:49 %S A247687 9,25,49,50,98,121,169,242,289,338,361,484,529,578,676,722,841,961, %T A247687 1058,1156,1369,1444,1681,1682,1849,1922,2116,2209,2312,2738,2809, %U A247687 2888,3362,3364,3481,3698,3721,3844,4232,4418,4489,5041,5329,5476,5618,6241,6724,6728,6889,6962,7396,7442,7688,7921,8836,8978,9409 %N A247687 Numbers m with the property that the symmetric representation of sigma(m) has three parts of width one. %C A247687 The symmetric representation of sigma(m) has 3 regions of width 1 where the two extremal regions each have 2^k - 1 legs and the central region starts with the p-th leg of the associated Dyck path for sigma(m) precisely when m = 2^(k - 1) * p^2 where 2^k < p <= row(m), k >= 1, p >= 3 is prime and row(m) = floor((sqrt(8*m + 1) - 1)/2). Furthermore, the areas of the two outer regions are (2^k - 1)*(p^2 + 1)/2 each so that the area of the central region is (2^k - 1)*p; for a proof see the link. %C A247687 Since the sequence is defined by a two-parameter expression it can be written naturally as a triangle as shown in the Example section. %C A247687 A263951 is a subsequence of this sequence containing the squares of all those primes p for which the areas of the 3 regions in the symmetric representation of p^2 (p once and (p^2 + 1)/2 twice) are primes; i.e., p^2 and p^2 + 1 are semiprimes (see A070552). - _Hartmut F. W. Hoft_, Aug 06 2020 %H A247687 Hartmut F. W. Hoft, <a href="/A247687/a247687.pdf">Three regions width one - triangle formula proof</a> %F A247687 As an irregular triangle, T(n, k) = 2^k * prime(n)^2 where n >= 2 and 0 <= k <= floor(log_2(prime(n)) - 1). %e A247687 We show portions of the first eight columns, powers of two 0 <= k <= 7, and 55 rows of the triangle through prime(56) = 263. %e A247687 p/k 0 1 2 3 4 5 6 7 %e A247687 3 9 %e A247687 5 25 50 %e A247687 7 49 98 %e A247687 11 121 242 484 %e A247687 13 169 338 676 %e A247687 17 289 578 1156 2312 %e A247687 19 361 722 1444 2888 %e A247687 23 529 1058 2116 4232 %e A247687 29 841 1682 3364 6728 %e A247687 31 961 1922 3844 7688 %e A247687 37 1369 2738 5476 10952 21904 %e A247687 41 1681 3362 6724 13448 26896 %e A247687 43 1849 3698 7396 14792 29584 %e A247687 47 2209 4418 8836 17672 35344 %e A247687 53 2809 5618 11236 22472 44944 %e A247687 59 3481 6962 13924 27848 55696 %e A247687 61 3721 7442 14884 29768 59536 %e A247687 67 4489 8978 17956 35912 71824 143648 %e A247687 71 5041 10082 20164 40328 80656 161312 %e A247687 . . . . . . . %e A247687 . . . . . . . %e A247687 131 17161 34322 68644 137288 274567 549152 1098304 %e A247687 137 18769 37538 75076 150152 300304 600608 1201216 %e A247687 . . . . . . . . %e A247687 . . . . . . . . %e A247687 257 66049 132098 264196 528392 1056784 2113568 4227136 8454272 %e A247687 263 69169 138338 276676 553352 1106704 2213408 4426816 8853632 %e A247687 Number 4 is not in this sequence since the symmetric representation of sigma(4) consists of a single region. Column k=0 contains the squares of primes (A001248(n), n>=2), column k=1 contains double the squares of primes (A079704(n), n>=2) and column k=2 contains four times the squares of primes (A069262(n), n>=5). %t A247687 (* path[n] and a237270[n] are defined in A237270 *) %t A247687 atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]] %t A247687 (* data *) %t A247687 Select[Range[10000], atmostOneDiagonalsQ[#] && Length[a237270[#]]==3 &] %t A247687 (* expression for the triangle in the Example section *) %t A247687 TableForm[Table[2^k Prime[n]^2, {n, 2, 57}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth -> 2, TableHeadings -> {Map[Prime, Range[2, 57]], Range[0, Floor[Log[2, Prime[57] - 1]]]}] %Y A247687 Cf. A000203, A237270, A237271, A237593, A241008, A241010, A246955, A250068, A250070, A250071. %Y A247687 Cf. A070552, A263951. %K A247687 nonn %O A247687 1,1 %A A247687 _Hartmut F. W. Hoft_, Sep 22 2014