This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247690 #14 Sep 08 2022 08:46:09 %S A247690 12131,19187,20276,20568,24340,26760,31639,31999,32968,34507,35367, %T A247690 41583,41671,43307,57079,64196,73731,85796,87720,93823,95691 %N A247690 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and 3-principalization type (4224). %C A247690 These fields are characterized either by their 3-principalization type (transfer kernel type, TKT) (4224), D.5, or equivalently by their transfer target type (TTT) [(3,3,3)^2, (3,9)^2] (called IPAD by Boston, Bush, Hajir). The latter is used in the MAGMA PROG, which essentially constitutes the principalization algorithm via class group structure. The TKT (4224) has two fixed points and is not a permutation. %C A247690 For all these discriminants, the 3-tower group is the metabelian Schur sigma-group SmallGroup(243, 7) and the Hilbert 3-class field tower terminates at the second stage. %C A247690 12131 has been discovered by Heider and Schmithals. %D A247690 F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25. %D A247690 D. C. Mayer, "The distribution of second p-class groups on coclass graphs", J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456. %H A247690 N. Boston, M. R. Bush, F. Hajir, <a href="http://arxiv.org/abs/1111.4679">Heuristics for p-class towers of imaginary quadratic fields</a>, Math. Ann. (2013), Preprint: arXiv:1111.4679v1 [math.NT], 2011. %H A247690 D. C. Mayer, <a href="http://arxiv.org/abs/1403.3839">Principalization algorithm via class group structure</a>, J. Théor. Nombres Bordeaux (2014), Preprint: arXiv:1403.3839v1 [math.NT], 2014. %o A247690 (Magma) %o A247690 for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo<C|x`subgroup>: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (2 eq e) then d, ", "; end if; end if; end if; end for; %Y A247690 Cf. A242862, A242863, A242864 (supersequences), and A247689, A242873 (disjoint sequences). %K A247690 hard,more,nonn %O A247690 1,1 %A A247690 _Daniel Constantin Mayer_, Sep 23 2014