This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247704 #14 Feb 07 2017 10:14:07 %S A247704 1,1,0,3,0,2,36,16,4,0,177,220,100,0,4,1300,1720,816,144,26,0,8866, %T A247704 11152,5616,1784,524,0,8,54849,85016,51116,18380,4656,584,88,0,372943, %U A247704 622732,448744,189360,52130,8948,1908,0,16,2466986,4528336,3670116,1806160,582250,127140,22206,1912,248,0 %N A247704 Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape L; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A247704 Sum_{k>0} k * T(n,k) = A247737(n). %H A247704 Alois P. Heinz, <a href="/A247704/b247704.txt">Rows n = 0..140, flattened</a> %H A247704 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a> %e A247704 T(2,2) = 2: %e A247704 .___. .___. %e A247704 | ._| |_. | %e A247704 | | | | | | %e A247704 | | | | | | %e A247704 |_| | | |_| %e A247704 |___| |___| . %e A247704 Triangle T(n,k) begins: %e A247704 00 : 1; %e A247704 01 : 1, 0; %e A247704 02 : 3, 0, 2; %e A247704 03 : 36, 16, 4, 0; %e A247704 04 : 177, 220, 100, 0, 4; %e A247704 05 : 1300, 1720, 816, 144, 26, 0; %e A247704 06 : 8866, 11152, 5616, 1784, 524, 0, 8; %e A247704 07 : 54849, 85016, 51116, 18380, 4656, 584, 88, 0; %e A247704 08 : 372943, 622732, 448744, 189360, 52130, 8948, 1908, 0, 16; %Y A247704 Row sums give A174249 or A233427(n,5). %Y A247704 Column k=0 gives A247768. %Y A247704 Cf. A247737. %K A247704 nonn,tabl %O A247704 0,4 %A A247704 _Alois P. Heinz_, Sep 22 2014