cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247749 Number T(n,k) of lattice paths from (0,0) to (n,0) that do not go below the x-axis or above the diagonal x=y, consist of steps u=(1,1), U=(1,3), H=(1,0), d=(1,-1) and D=(1,-3) for which the area below the path is k; triangle T(n,k), n>=0, read by rows.

This page as a plain text file.
%I A247749 #14 Apr 29 2022 05:46:40
%S A247749 1,1,1,1,1,2,1,1,3,3,2,2,0,1,1,4,6,6,6,3,4,2,1,1,1,5,10,13,15,12,14,
%T A247749 15,9,12,5,5,1,1,1,6,15,24,32,33,37,46,40,43,34,28,23,16,10,5,2,1,1,7,
%U A247749 21,40,61,75,88,114,122,134,137,118,127,101,99,69,68,41,38,19,17,5,5,0,1
%N A247749 Number T(n,k) of lattice paths from (0,0) to (n,0) that do not go below the x-axis or above the diagonal x=y, consist of steps u=(1,1), U=(1,3), H=(1,0), d=(1,-1) and D=(1,-3) for which the area below the path is k; triangle T(n,k), n>=0, read by rows.
%H A247749 Alois P. Heinz, <a href="/A247749/b247749.txt">Rows n = 0..50, flattened</a>
%F A247749 Sum_{k>=0}     T(n,k) = A240904(n).
%F A247749 Sum_{k>=1} k * T(n,k) = A247748(n).
%e A247749 Triangle T(n,k) begins:
%e A247749 1;
%e A247749 1;
%e A247749 1, 1;
%e A247749 1, 2,  1;
%e A247749 1, 3,  3,  2,  2,  0,  1;
%e A247749 1, 4,  6,  6,  6,  3,  4,  2,  1,  1;
%e A247749 1, 5, 10, 13, 15, 12, 14, 15,  9, 12,  5,  5,  1,  1;
%e A247749 1, 6, 15, 24, 32, 33, 37, 46, 40, 43, 34, 28, 23, 16, 10, 5, 2, 1;
%p A247749 b:= proc(x, y) option remember; `if`(y<0 or x<y, 0, `if`(x=0, 1,
%p A247749       expand(add(z^(y+j/2)*b(x-1, y+j), j=[-1, -3, 0, 1, 3]))))
%p A247749     end:
%p A247749 T:= n-> (p->seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0)):
%p A247749 seq(T(n), n=0..10);
%t A247749 b[x_, y_] := b[x, y] = If[y < 0 || x < y, 0, If[x == 0, 1,
%t A247749      Expand[Sum[z^(y+j/2)*b[x-1, y+j], {j, {-1, -3, 0, 1, 3}}]]]];
%t A247749 T[n_] := CoefficientList[b[n, 0], z];
%t A247749 Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Apr 29 2022, after _Alois P. Heinz_ *)
%Y A247749 Cf. A240904, A247748.
%K A247749 nonn,tabf
%O A247749 0,6
%A A247749 _Alois P. Heinz_, Sep 23 2014