cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247781 Least k such that 1/e - (1 - 1/k)^k < 1/n.

This page as a plain text file.
%I A247781 #5 Sep 25 2014 21:16:20
%S A247781 1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,
%T A247781 7,8,8,8,8,8,8,9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,12,12,12,12,
%U A247781 12,13,13,13,13,13,13,14,14,14,14,14,15,15,15
%N A247781 Least k such that 1/e - (1 - 1/k)^k < 1/n.
%C A247781 a(n+1) - a(n) is in {0,1} for n >= 1.
%H A247781 Clark Kimberling, <a href="/A247781/b247781.txt">Table of n, a(n) for n = 1..5000</a>
%e A247781 The values of 1/e - (1 - 1/k)^k for n = 1..9 are approximately 0.367879, 0.117879, 0.0715831, 0.0514732, 0.0401994, 0.0329815, 0.0279628, 0.0242705, 0.02144, from which we see that the first 9 terms of A247781 are 1, 1, 2, 2, 2, 2, 2, 2, 3.
%t A247781 z = 400; f[n_] := f[n] = Select[Range[z], 1/E - (1 - 1/#)^# < 1/n &, 1];
%t A247781 u = Flatten[Table[f[n], {n, 1, z}]] (*A247781*)
%t A247781 d1 = Flatten[Position[Differences[u], 0]] (*A247782*)
%t A247781 d2 = Flatten[Position[Differences[u], 1]] (*A247783*)
%Y A247781 Cf. A247782, A247783, A247778.
%K A247781 nonn,easy
%O A247781 1,3
%A A247781 _Clark Kimberling_, Sep 24 2014