This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247816 #46 May 07 2023 11:18:29 %S A247816 4,11,36,271,271,271,2209,11199,13717,13717,34369,172146,172146, %T A247816 3094795,3094795,4308948,12762142,23902561,72084956,72084956,72084956, %U A247816 1052779161,1052779161,1857276773,1857276773,19398320447,57446769091,57446769091,57446769091 %N A247816 a(n) is the smallest k such that prime(k+i) = 1 (mod 6) for i = 0, 1,...,n-1. %C A247816 Equivalently, "mod 6" can be replaced by "mod 3". See A247967 for the variant "= 5 (mod 6)" and A276414 for runs of primes congruent to each other (mod 3). - _M. F. Hasler_, Sep 02 2016 %C A247816 The sequence is infinite, by Shiu's theorem. - _Jonathan Sondow_, Jun 22 2017 %H A247816 Giovanni Resta, <a href="/A247816/b247816.txt">Table of n, a(n) for n = 1..35</a> %H A247816 D. K. L. Shiu, <a href="http://dx.doi.org/10.1112/S0024610799007863">Strings of Congruent Primes</a>, J. Lond. Math. Soc. 61 (2) (2000) 359-373 [<a href="http://www.ams.org/mathscinet-getitem?mr=1760689">MR1760689</a>] %F A247816 a(n) = primepi(A057620(n)). - _Michel Marcus_, Sep 30 2014 %e A247816 a(1)= 4 => prime(4) (mod 6)= 1; %e A247816 a(2)= 11 => prime(11)(mod 6)= 1, prime(12)(mod 6) = 1; %e A247816 a(3)= 36 => prime(36)(mod 6)= 1, prime(37)(mod 6)= 1, prime(38)(mod 6)= 1. %e A247816 The resulting primes are: %e A247816 7; %e A247816 31, 37; %e A247816 151, 157, 163; %e A247816 1741, 1747, 1753, 1759; %e A247816 1741, 1747, 1753, 1759, 1777; %e A247816 1741, 1747, 1753, 1759, 1777, 1783; %e A247816 19471, 19477, 19483, 19489, 19501, 19507, 19531; %e A247816 ... - _Michel Marcus_, Sep 29 2014 %p A247816 for n from 1 to 22 do : %p A247816 ii:=0: %p A247816 for k from 3 to 10^5 while (ii=0)do : %p A247816 s:=0: %p A247816 for i from 0 to n-1 do: %p A247816 r:=irem(ithprime(k+i),6): %p A247816 if r = 1 %p A247816 then %p A247816 s:=s+1: %p A247816 else %p A247816 fi: %p A247816 od: %p A247816 if s=n and ii=0 %p A247816 then %p A247816 printf ( "%d %d \n",n,k):ii:=1: %p A247816 else %p A247816 fi: %p A247816 od: %p A247816 od: %t A247816 With[{m6=If[Mod[#,6]==1,1,0]&/@Prime[Range[5*10^6]]},Flatten[Table[SequencePosition[ m6,PadRight[{},n,1],1],{n,16}],1]][[;;,1]] (* _Harvey P. Dale_, May 07 2023 *) %o A247816 (PARI) m=c=i=0;forprime(p=1,, i++;p%6!=1&&(!c||!c=0)&&next; c++>m||next; print1(1+i-m=c,",")) \\ _M. F. Hasler_, Sep 02 2016 %Y A247816 Cf. A057620, A247967; A276414. %K A247816 nonn,hard %O A247816 1,1 %A A247816 _Michel Lagneau_, Sep 28 2014 %E A247816 a(12)-a(21) from A057620 by _Michel Marcus_, Oct 03 2014 %E A247816 a(22)-a(29) from _Giovanni Resta_, Oct 03 2018