This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247847 #11 Feb 16 2025 08:33:23 %S A247847 4,3,2,3,3,2,3,5,8,3,8,1,6,9,3,6,5,4,0,5,3,0,0,0,2,5,2,5,1,3,7,5,7,7, %T A247847 9,8,2,9,6,1,8,4,2,2,7,0,4,5,2,1,2,0,5,9,2,6,5,9,2,0,5,6,3,6,7,2,9,6, %U A247847 3,3,1,2,9,4,9,2,5,6,1,5,5,0,3,1,4,5,0,9,3,8,7,5,4,6,7,1,4,7,5,6,2,2,4,6 %N A247847 Decimal expansion of m = (1-1/e^2)/2, one of Renyi's parking constants. %C A247847 Curiously, this Renyi parking constant is very close to the prime generated continued fraction A084255 (gap ~ 10^-7). %D A247847 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Renyi's parking constant, p. 280. %H A247847 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RenyisParkingConstants.html">Rényi's Parking Constants</a> %H A247847 Marek Wolf, <a href="http://arxiv.org/abs/1003.4015">Continued fractions constructed from prime numbers</a>, arxiv.org/abs/1003.4015, pp. 4-5. %F A247847 Define s(n) = Sum_{k = 0..n} 2^k/k!. Then (1 - 1/e^2)/2 = Sum_{n >= 0} 2^n/( (n+1)!*s(n)*s(n+1) ). Cf. A073333. - _Peter Bala_, Oct 23 2023 %e A247847 0.432332358381693654053000252513757798296184227045212... %t A247847 RealDigits[(1 - 1/E^2)/2 , 10, 104] // First %Y A247847 Cf. A001113, A050996, A073333, A084255, A092555, A242943, A243266, A247392. %K A247847 nonn,cons,easy %O A247847 0,1 %A A247847 _Jean-François Alcover_, Sep 25 2014