This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247857 #29 Oct 05 2015 09:19:36 %S A247857 2,5,17,17,37,41,97,97,101,137,181,197,241,257,257,277,281,337,337, %T A247857 401,457,577,617,641,641,661,677,757,769,821,857,881,881,977,1097, %U A247857 1109,1201,1217,1237,1297,1297,1301,1321,1409,1481,1601,1657,1697,1777,2017,2069,2137,2281,2389,2417,2417,2437 %N A247857 Primes of the form a^2 + b^4, with repetition. %C A247857 Duplicates, which begin 17, 97, 257, 337, etc, are quartan primes A002645, except 2 (noticed by _Michel Marcus_). %C A247857 Is there any triple? %C A247857 No, by the uniqueness part of Fermat's two-squares theorem, at most one duplicate of a^2 + b^4 can exist. Namely, when a is a square, say a = B^2, then a^2 + b^4 = A^2 + B^4 where A = b^2. (This also proves Marcus's comment, since a^2 + b^4 = b^4 + B^4.) - _Jonathan Sondow_, Oct 03 2015 %H A247857 Reinhard Zumkeller, <a href="/A247857/b247857.txt">Table of n, a(n) for n = 1..10000</a> %H A247857 Art of Problem Solving, <a href="http://www.artofproblemsolving.com/wiki/index.php/Fermat's_Two_Squares_Theorem">Fermat's Two Squares Theorem</a> %H A247857 John Friedlander and Henryk Iwaniec, <a href="http://www.pnas.org/cgi/content/full/94/4/1054">Using a parity-sensitive sieve to count prime values of a polynomial</a>, PNAS, vol. 94 no. 4, pp. 1054-1058. %H A247857 Marek Wolf, <a href="http://arxiv.org/abs/1003.4015">Continued fractions constructed from prime numbers</a>, arXiv:1003.4015 [math.NT], 2010, p. 8. %H A247857 Wikipedia, <a href="http://en.wikipedia.org/wiki/Friedlander%E2%80%93Iwaniec_theorem">Friedlander-Iwaniec theorem</a> %e A247857 Since 97 = 4^2 + 3^4 = 9^2 + 2^4, it appears twice in the sequence. %t A247857 max = 10^4; r = Reap[Do[n = a^2 + b^4; If[n <= max && PrimeQ[n], Sow[n]], {a, Sqrt[max]}, {b, max^(1/4)}]][[2, 1]]; Union[r, SameTest -> (False&)] %o A247857 (Haskell) %o A247857 a247857 n = a247857_list !! (n-1) %o A247857 a247857_list = concat $ zipWith replicate a256852_list a000040_list %o A247857 -- _Reinhard Zumkeller_, Apr 11 2015 %Y A247857 Cf. A002645, A028916 (same sequence without repetition). %Y A247857 Cf. A000040, A256852. %K A247857 nonn %O A247857 1,1 %A A247857 _Jean-François Alcover_, Sep 25 2014