This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247859 #24 Sep 29 2014 19:11:21 %S A247859 1,2,32,5120,9175040,197300060160,53337309063413760, %T A247859 187446932178571288903680,8783433335287216312557974323200, %U A247859 5597436690584888372318289416604667084800,49290698636690081763273206158480893991348233830400,6076713947745931800683801366458443411856602743866957548748800 %N A247859 The product of the first n Catalan numbers and 2^(n^2). %C A247859 The volume of a certain polytope (the type D_(n+2) Chan-Robbins-Yuen polytope). This was conjectured by Meszaros-Morales and proved independently by Zeilberger and Kim, both using a variant of the Morris constant term identity (just as for the original Chan-Robbins-Yuen polytope). %H A247859 J. S. Kim, <a href="http://arxiv.org/abs/1407.3467">Proof of a conjecture of Mészáros and Morales on the volume of a flow polytope</a>, arXiv:1407.3467, 2014. %H A247859 K. Mészáros, A. H. Morales, <a href="http://arxiv.org/abs/1208.0140">Flow polytopes of signed graphs and the Kostant partition function</a>, ArXiv:1208.0140, 2012. %H A247859 D. Zeilberger, <a href="http://arxiv.org/abs/1407.2829">Sketch of a Proof of an Intriguing Conjecture of Karola Mészáros and Alejandro Morales Regarding the Volume of the Dn Analog of the Chan-Robbins-Yuen Polytope (Or: The Morris-Selberg Constant Term Identity Strikes Again!)</a>, arXiv:1407.2829, 2014. %F A247859 a(n) = 2^(n^2) * A003046(n). %F A247859 a(n) = 2^(n^2) * prod(k=0..n) A000108(k). %p A247859 seq(2^(n^2)*mul(binomial(2*k, k)/(1+k), k=0..n), n=0..13); %t A247859 a[n_] := 2^(n^2)*Product[ CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 13}] %Y A247859 Cf. A000108 (Catalan numbers). %Y A247859 Cf. A003046 (Product of first n Catalan numbers). %K A247859 nonn,easy %O A247859 0,2 %A A247859 _Alejandro H. Morales_, Sep 25 2014