A247860 Decimal expansion of the value of the continued fraction [0; 2, 5, 17, 37, 101, 197, ...], generated with primes of the form n^2 + 1.
4, 5, 5, 0, 2, 5, 6, 9, 9, 8, 0, 1, 9, 9, 4, 6, 8, 7, 1, 8, 0, 2, 0, 2, 1, 0, 2, 6, 3, 8, 0, 8, 4, 2, 1, 8, 9, 8, 1, 3, 7, 6, 8, 7, 9, 4, 7, 6, 3, 5, 0, 6, 6, 1, 9, 7, 1, 4, 2, 4, 6, 4, 2, 7, 6, 2, 5, 0, 5, 6, 7, 0, 6, 6, 5, 5, 8, 1, 8, 7, 3, 7, 5, 6, 6, 2, 3, 9, 2, 4, 4, 9, 5, 9, 7, 6, 0, 8, 6, 8, 7, 5, 6
Offset: 0
Examples
1/(2 + 1/(5 + 1/(17 + 1/(37 + 1/(101 + 1/(197 + 1/(257 + 1/(401 + ...)))))))) 0.45502569980199468718020210263808421898137687947635...
Links
- Marek Wolf, Continued fractions constructed from prime numbers, arxiv.org/abs/1003.4015, p. 11.
Programs
-
Mathematica
pp = Select[Range[100]^2 + 1, PrimeQ]; RealDigits[FromContinuedFraction[Join[{0}, pp]], 10, 103] // First