This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247882 #17 Mar 11 2025 03:00:19 %S A247882 5,15,705,2795,14105,18645,38547,43485,53915,57957,62417,76287,82355, %T A247882 94445,96657,145937,162605,178817,180677,184877,193625,234017,238887, %U A247882 256557,261017,287835,297815,334007,339525,346425,387297,399387,407145,417597,418845,419147 %N A247882 Numbers, p, that generate the prime quadruplets p^2-2p+2k (for k = -2, -1, 1, 2). %C A247882 For a subset of this list, restricted only to primes, see A247845. %C A247882 All terms == 5 or 7 (mod 10). - _Robert Israel_, Mar 10 2025 %H A247882 Robert Israel, <a href="/A247882/b247882.txt">Table of n, a(n) for n = 1..1000</a> %e A247882 5 is in the sequence as it generates the prime quadruplet 5^2-2*5-4=11; 5^2-2*5-2=13; 5^2-2*5+2=17; and, 5^2-2*5+4=19. %p A247882 filter:= p -> andmap(isprime, [p^2-2*p-4,p^2-2*p-2,p^2-2*p+2,p^2-2*p+4]): %p A247882 select(filter, [seq(seq(10*i+j,j=[5,7]),i=0..10^6)]); %o A247882 (PARI) lista(nn) = {vk = [-2, -1, 1, 2]; for (p = 2, nn, nb = 0; for (k = 1, 4, nb += isprime(p^2-2*p+2*vk[k]);); if (nb == 4, print1(p, ", ")););} \\ _Michel Marcus_, Sep 26 2014 %Y A247882 Cf. A247845 (subsequence of primes). %K A247882 nonn %O A247882 1,1 %A A247882 _Ray G. Opao_, Sep 25 2014 %E A247882 More terms from _Michel Marcus_, Sep 26 2014