This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247883 #13 Mar 11 2025 04:06:23 %S A247883 2,7,47,52,187,222,477,587,5522,6777 %N A247883 Consecutive exclusionary cubes: Digits of n are not present in n^3 and digits of n+1 are not present in (n+1)^3. %C A247883 If it exists, a(11) > 10^7. %C A247883 All terms == 2 (mod 5). - _Robert Israel_, Mar 10 2025 %p A247883 filter:= proc(n) convert(convert(n,base,10),set) intersect convert(convert(n^3,base,10),set) = {} end proc: %p A247883 select(t -> filter(t) and filter(t+1), [seq(i,i=2..10^6, 5)]); # _Robert Israel_, Mar 10 2025 %o A247883 (Python) %o A247883 for n in range(10**6): %o A247883 s, t = str(n), str(n+1) %o A247883 s3, t3 = str(n**3), str((n+1)**3) %o A247883 c = 0 %o A247883 for i in s: %o A247883 if s3.count(i): %o A247883 c += 1 %o A247883 break %o A247883 for j in t: %o A247883 if t3.count(j): %o A247883 c += 1 %o A247883 break %o A247883 if not c: %o A247883 print(n, end=', ') %o A247883 (PARI) %o A247883 for(n=1,10^6,s=digits(n);t=digits(n+1);s3=digits(n^3);t3=digits((n+1)^3);if(#vecsort(concat(s,s3),,8)==#vecsort(s,,8)+#vecsort(s3,,8)&&#vecsort(concat(t,t3),,8)==#vecsort(t,,8)+#vecsort(t3,,8),print1(n,", "))) %Y A247883 Cf. A029785. %K A247883 nonn,base,more %O A247883 1,1 %A A247883 _Derek Orr_, Sep 25 2014 %E A247883 Definition corrected by _Robert Israel_, Mar 10 2025