A247916 Numbers k such that A247914(k+1) = A247914(k) + 1.
1, 6, 10, 14, 19, 23, 28, 33, 38, 43, 49, 54, 59, 65, 71, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 143, 149, 155, 162, 168, 174, 181, 187, 194, 201, 207, 214, 221, 227, 234, 241, 248, 254, 261, 268, 275, 282, 289, 296, 303, 310, 317, 324, 331, 338
Offset: 1
Examples
A247914(n+1) - A247914(n) = (2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1,...), and a(n) is the position of the n-th 2.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
$RecursionLimit = Infinity; $MaxExtraPrecision = Infinity; z = 500; u[1] = 0; u[2] = 1; u[n_] := u[n] = u[n - 1] + u[n - 2]/(n - 2); f[n_] := f[n] = Select[Range[z], Abs[(# + 1)/u[# + 1] - E] < n^-n &, 1]; u = Flatten[Table[f[n], {n, 1, z}]] (* A247914 *) w = Differences[u] f1 = Flatten[Position[w, 1]] (* A247915 *) f2 = Flatten[Position[w, 2]] (* A247916 *)
Comments