This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247935 #27 May 23 2021 02:47:04 %S A247935 1,1,2,3,4,5,8,10,11,14,18,21,26,30,38,49,47,55,66,74,84,96,110,126, %T A247935 134,151,171,195,209,235,272,318,307,349,377,422,448,491,534,595,617, %U A247935 674,734,801,841,925,998,1098,1118,1219,1299,1418,1476,1591,1711,1865 %N A247935 Number of integer partitions of n whose distinct parts have no binary carries. %C A247935 From _Gus Wiseman_, Mar 31 2019: (Start) %C A247935 A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the reversed binary expansions of 2, 5, and 8 are %C A247935 {0,1} %C A247935 {1,0,1} %C A247935 {0,0,0,1} %C A247935 and since there are no columns with more than one 1, the partition (8,5,2) is counted under a(15). The Heinz numbers of these partitions are given by A325097. %C A247935 (End) %H A247935 Alois P. Heinz, <a href="/A247935/b247935.txt">Table of n, a(n) for n = 0..1000</a> %e A247935 From _Gus Wiseman_, Mar 30 2019: (Start) %e A247935 The a(1) = 1 through a(8) = 11 partitions: %e A247935 (1) (2) (3) (4) (5) (6) (7) (8) %e A247935 (11) (21) (22) (41) (33) (43) (44) %e A247935 (111) (211) (221) (42) (52) (422) %e A247935 (1111) (2111) (222) (61) (611) %e A247935 (11111) (411) (421) (2222) %e A247935 (2211) (2221) (4211) %e A247935 (21111) (4111) (22211) %e A247935 (111111) (22111) (41111) %e A247935 (211111) (221111) %e A247935 (1111111) (2111111) %e A247935 (11111111) %e A247935 (End) %p A247935 with(Bits): %p A247935 b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A247935 b(n, i-1, t) +`if`(i>n or And(t, i)>0, 0, %p A247935 add(b(n-i*j, i-1, Or(t, i)), j=1..n/i)))) %p A247935 end: %p A247935 a:= n-> b(n$2, 0): %p A247935 seq(a(n), n=0..80); # _Alois P. Heinz_, Dec 28 2014 %t A247935 binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A247935 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A247935 Table[Length[Select[IntegerPartitions[n],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,20}] (* _Gus Wiseman_, Mar 30 2019 *) %t A247935 b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, t] + If[i > n || BitAnd[t, i] > 0, 0, Sum[b[n - i*j, i - 1, BitOr[t, i]], {j, 1, n/i}]]]]; %t A247935 a[n_] := b[n, n, 0]; %t A247935 a /@ Range[0, 80] (* _Jean-François Alcover_, May 23 2021, after _Alois P. Heinz_ *) %Y A247935 Cf. A000110, A000120, A050315, A070939, A080572, A248605, A267610. %Y A247935 Cf. A325095, A325096, A325097, A325098, A325102, A325103, A325109. %K A247935 nonn %O A247935 0,3 %A A247935 _David S. Newman_, Sep 26 2014 %E A247935 More terms from _Alois P. Heinz_, Oct 15 2014 %E A247935 Name edited by _Gus Wiseman_, Mar 31 2019