A247950 Decimal expansion of the value of a nonregular continued fraction giving tau/(3*tau-1), where tau is the Prouhet-Thue-Morse constant.
1, 7, 3, 7, 6, 5, 7, 4, 9, 4, 7, 7, 6, 5, 5, 3, 6, 2, 1, 2, 6, 0, 0, 6, 7, 8, 8, 8, 5, 1, 7, 4, 6, 2, 0, 9, 9, 7, 9, 4, 3, 8, 5, 6, 2, 4, 1, 0, 6, 5, 3, 8, 3, 2, 9, 6, 2, 6, 0, 3, 6, 7, 4, 2, 8, 7, 2, 9, 8, 9, 7, 6, 6, 5, 3, 5, 8, 6, 7, 3, 9, 2, 5, 1, 4, 6, 2, 8, 7, 4, 5, 9, 6, 2, 0, 0, 2, 5, 6, 8, 3, 9, 6
Offset: 1
Examples
1.737657494776553621260067888517462099794385624106538329626...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.8 Prouhet-Thue-Morse Constant, p. 437.
Links
- Eric Weisstein's MathWorld, Thue-Morse Constant
Programs
-
Maple
evalf(1/(3-1/(1/2-(1/4)*(product(1-1/2^(2^k), k=0..11)))), 120); # Vaclav Kotesovec, Oct 01 2014
-
Mathematica
(* 10 terms suffice to get 103 correct digits *) t = Fold[Function[2^2^#2 - (2^2^#2 - 1)/#1], 2, Reverse[Range[0, 10]]]; RealDigits[t, 10, 103] // First
Formula
2 - 1/(4 - 3/(16 - 15/(256 - 255/65536 - ...))).
Pattern is generated by 2^(2^n) and 2^(2^n)-1.