This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247969 #15 Oct 18 2020 02:49:35 %S A247969 4,4,4,4,4,4,25,25,59,141,141,141,141,141,141,141,141,141,141,141, %T A247969 280230,280230,981960,981960,981960,4505195,4505195,7438440,15658002, %U A247969 15658002,15658002,15658002,2628111621,4671618380,4671618380,5803722576,5803722576,5803722576 %N A247969 a(n) is the smallest k such that prime(k+i) (mod 6) takes successively the values 1,5,1,5,... for i = 0, 1,...,n-1 ending with 1 or 5. %H A247969 Rémy Sigrist, <a href="/A247969/a247969.gp.txt">PARI program for A247969</a> %e A247969 a(1)= 4 => prime(4) (mod 6)= 1, and not for k = 1, 2, 3. %e A247969 a(2)= 4 => prime(4) (mod 6)= 1, prime(5) (mod 6) = 5; %e A247969 a(3)= 4 => prime(4) (mod 6)= 1, prime(5) (mod 6)= 5, prime(6) (mod 6)= 1. %e A247969 The corresponding primes are for %e A247969 n= 6: 7, 11, 13, 17, 19, 23; %e A247969 n= 8: 97, 101, 103, 107, 109, 113, 127, 131; %e A247969 n= 9: 277, 281, 283, 293, 307, 311, 313, 317, 331; %e A247969 n= 20: 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941. - _Michel Marcus_, Sep 29 2014 %p A247969 for n from 1 to 21 do : %p A247969 ii:=0: %p A247969 for k from 3 to 10^5 while (ii=0)do : %p A247969 s:=0: %p A247969 for i from 0 to n-1 do: %p A247969 r:=irem(ithprime(k+i),6): %p A247969 if r = irem(5^i,6) %p A247969 then %p A247969 s:=s+1: %p A247969 else %p A247969 fi: %p A247969 od: %p A247969 if s=n and ii=0 %p A247969 then %p A247969 printf ( "%d %d \n",n,k):ii:=1: %p A247969 else %p A247969 fi: %p A247969 od: %p A247969 od: %o A247969 (PARI) a(n) = {k = 1; ok = 0; while (! ok, m = 1; nb = 0; for (i=0, n-1, if ((prime(k+i) % 6) == m, nb++, break); m = 5*m % 6;); if (nb == n, ok = 1, k++);); k;} \\ _Michel Marcus_, Sep 29 2014 %o A247969 (PARI) See Links section. %Y A247969 Cf. A000040, A247816, A247967. %K A247969 nonn %O A247969 1,1 %A A247969 _Michel Lagneau_, Sep 28 2014 %E A247969 More terms from _Rémy Sigrist_, Oct 18 2020