cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247975 Least positive integer m such that m + n divides prime(m)^2 + prime(n)^2.

This page as a plain text file.
%I A247975 #21 Jan 04 2018 17:28:36
%S A247975 1,8,15479,30,29,68,51,2,73,15,39,13,12,36,10,25,33,8,15,38,40,108,42,
%T A247975 1,16,39,31,57,5,4,27,2,17,51,30,14,36,20,11,21,32,23,39,689,29,4,27,
%U A247975 1873,184,7248,7,153,132,76,75,18,28,99,2,86
%N A247975 Least positive integer m such that m + n divides prime(m)^2 + prime(n)^2.
%C A247975 Conjecture: a(n) exists for any n > 0. - _Zhi-Wei Sun_, Sep 28 2014
%C A247975 If a(i) = j, then a(j) <= i. - _Derek Orr_, Sep 28 2014
%H A247975 Chai Wah Wu, <a href="/A247975/b247975.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..5000 from Zhi-Wei Sun)
%H A247975 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1409.5685">A new theorem on the prime-counting function</a>, arXiv:1409.5685, 2014.
%e A247975 a(2) = 8 since 8 + 2 = 10 divides prime(8)^2 + prime(2)^2 = 19^2 + 3^2 = 370.
%e A247975 a(3) = 15479 since 15479 + 3 = 15482 divides prime(15479)^2 + prime(3)^2 = 169789^2 + 5^2 = 28828304546 = 15482*1862053.
%e A247975 a(4703) = 760027770 since 760027770 + 4703 = 760032473 divides prime(760027770)^2 + prime(4703)^2 = 17111249191^2 + 45329^2 = 292794848878552872722 = 760032473*385239919714.
%t A247975 Do[m = 1; Label[aa]; If[Mod[Prime[m]^2 + Prime[n]^2, m + n] == 0, Print[n, " ", m]; Goto[bb]]; m = m + 1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
%o A247975 (PARI)
%o A247975 a(n)=m=1;while((prime(m)^2+prime(n)^2)%(m+n),m++);m
%o A247975 vector(75,n,a(n)) \\ _Derek Orr_, Sep 28 2014
%Y A247975 Cf. A000040, A247824.
%K A247975 nonn
%O A247975 1,2
%A A247975 _Zhi-Wei Sun_, Sep 28 2014