This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A247988 #4 Sep 30 2014 15:57:21 %S A247988 4,11,19,27,36,45,54,64,74,84,94,105,115,126,136,147,158,169,180,191, %T A247988 203,214,225,237,248,260,272,283,295,307,319,331,343,355,367,379,391, %U A247988 403,416,428,440,452,465,477,490,502,515,527,540,552,565,578,590,603 %N A247988 Least number k such that e - k/(k!)^(1/k) < 1/n. %D A247988 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 14. %e A247988 Let w(n) = e - n/(n!)^(1/n). Approximations are shown here: %e A247988 n .... w(n) ...... 1/n %e A247988 1 .... 1.71828 .... 1 %e A247988 2 .... 1.30407 .... 0.5 %e A247988 3 .... 1.06732 .... 0.333333 %e A247988 4 .... 0.911078 ... 0.25 %e A247988 5 .... 0.799022 ... 0.2 %e A247988 10 ... 0.510157 ... 0.1 %e A247988 11 ... 0.477609 ... 0.090909 %e A247988 a(2) = 11 because w(11) < 1/2 < w(10). %t A247988 $MaxExtraPrecision = Infinity; %t A247988 z = 1000; p[k_] := p[k] = k/(k!)^(1/k) (* Finch p. 14 *) %t A247988 N[Table[E - p[n], {n, 1, z}]]; %t A247988 f[n_] := f[n] = Select[Range[z], E - p[#] < 1/n &, 1]; %t A247988 u = Flatten[Table[f[n], {n, 1, z/10}]] (* A247988 *) %Y A247988 Cf. A247778, A247908, A247911, A247914, A247985. %K A247988 nonn,easy %O A247988 1,1 %A A247988 _Clark Kimberling_, Sep 29 2014