cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248004 Least positive integer m with prime(m*n) == 1 (mod m+n).

This page as a plain text file.
%I A248004 #14 Oct 01 2017 12:09:53
%S A248004 3,4,1,2,2,15,1,1,5,10,2,3,4,18,6,27,4,7,35,4,45,2,47,9,5,10,16,11,3,
%T A248004 3,9,61,1,52,3,60,53,74,8,47,7,60,128,5,21,12,2,29,15,127,53,28,17,21,
%U A248004 303,80,72,8,61,36
%N A248004 Least positive integer m with prime(m*n) == 1 (mod m+n).
%C A248004 Conjecture: (i) a(n) exists for any n > 0. Moreover, a(n) does not exceed n*(n-1)/2 if n > 2.
%C A248004 (ii) For each positive integer n, there is an integer m > 0 with prime(m*n) == -1 (mod m+n). Moreover, we may require that m does not exceed n*(n-1)/2 if n > 2.
%H A248004 Zhi-Wei Sun, <a href="/A248004/b248004.txt">Table of n, a(n) for n = 1..10000</a>
%H A248004 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1409.5685">A new theorem on the prime-counting function</a>, arXiv:1409.5685, 2014.
%e A248004 a(2) = 4 since prime(2*4) = 19 is congruent to 1 modulo 2 + 4 = 6.
%e A248004 a(5146) = 593626 since prime(5146*593626) = prime(3054799396) = 73226821741 is congruent to 1 modulo 5146 + 593626 = 598772.
%t A248004 Do[m=1;Label[aa];If[Mod[Prime[m*n],m+n]==1,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
%t A248004 lpim[n_]:=Module[{m=1},While[Mod[Prime[m*n],m+n]!=1,m++];m]; Array[lpim,60] (* _Harvey P. Dale_, Oct 01 2017 *)
%Y A248004 Cf. A000040, A247824, A247975.
%K A248004 nonn
%O A248004 1,1
%A A248004 _Zhi-Wei Sun_, Sep 29 2014