A248008 Least positive integer m such that m + n divides sigma(m*n), where sigma(k) denotes the sum of all positive divisors of k.
2, 1, 1, 3, 1, 4, 1, 7, 4, 14, 1, 18, 1, 10, 9, 15, 1, 12, 1, 1, 11, 5, 1, 4, 6, 4, 6, 2, 1, 18, 1, 28, 6, 14, 13, 13, 1, 12, 17, 22, 1, 22, 1, 10, 3, 10, 1, 30, 8, 12, 9, 18, 1, 2, 17, 6, 7, 26, 1, 52, 1, 22, 28, 38, 19, 12, 1, 22, 36, 26
Offset: 1
Keywords
Examples
a(6) = 4 since 4 + 6 = 10 divides sigma(4*6) = 60.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1; Label[aa]; If[Mod[DivisorSigma[1,m*n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n,1,70}]
-
PARI
a(n)=m=1;while(sigma(m*n)%(m+n),m++);m vector(100,n,a(n)) \\ Derek Orr, Sep 29 2014
Comments