This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248015 #16 Feb 16 2025 08:33:23 %S A248015 8,18,28,30,34,44,46,48,50,58,60,64,68,70,76,78,86,88,96,98,100,104, %T A248015 108,114,118,128,136,144,148,158,164,166,168,178,186,188,190,194,196, %U A248015 198,200 %N A248015 Positive numbers n such that n^2 + 1 is composite and there are no positive integers c and z such that n = c*z^2 + z + c. %C A248015 Subset of A134407. %C A248015 If f(x) = x^2 + 1 and g(c,y) = c*y^2 + y + c then the algebraic substitution of g for x gives a factorization: f(g(c,y)) = (y^2 + 1)*(c^2*y^2 + c^2 + 2*c*y + 1). Since both factors of f(g(c,y)) are integers greater than one, f(g(c,y)) is a composite number. %C A248015 The numbers are necessarily even terms from A134407 since for odd n = 2c + 1 one has the "forbidden" decomposition with z = 1. - _M. F. Hasler_, Oct 04 2014 %H A248015 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LandausProblems.html">Landau's Problems</a> %p A248015 maxn:=200: %p A248015 mb:=proc(n::integer)::integer; %p A248015 if isprime(n^2+1)=false then return n else return -1 fi; %p A248015 end proc: %p A248015 A134407 := Vector(maxn): %p A248015 for a from 1 to maxn do A134407[a]:= mb(a): end do: %p A248015 A134407s:=convert(A134407,'set') minus {-1}: %p A248015 A134407l:=convert(A134407s,'list'): %p A248015 for c from 1 to 200 do %p A248015 for z from 1 to 20 do %p A248015 A134407s := A134407s minus {c*z^2 + z + c}: %p A248015 end do: %p A248015 end do: %p A248015 A134407s; %o A248015 (PARI) is(n)={!bittest(n,0)&&!isprime(n^2+1)&&!for(z=2,sqrtint(n),(n-z)%(z^2+1)||return)} \\ _M. F. Hasler_, Oct 04 2014 %Y A248015 Cf. A134407. %K A248015 nonn %O A248015 1,1 %A A248015 _Matt C. Anderson_, Sep 29 2014