A248016 Sum over each antidiagonal of A248011.
0, 0, 3, 16, 67, 204, 546, 1268, 2714, 5348, 9965, 17580, 29781, 48520, 76660, 117624, 176196, 257976, 370503, 522456, 725175, 991540, 1337974, 1782924, 2349438, 3063164, 3955601, 5061524, 6423017, 8086224, 10106280, 12543280, 15468232, 18958128, 23103051, 28000224, 33762411, 40510812, 48384906, 57534052
Offset: 1
Keywords
Examples
a(1..9) are formed as follows: . Antidiagonals of A248011 n a(n) . 0 1 0 . 0 0 2 0 . 1 1 1 3 3 . 2 6 6 2 4 16 . 6 14 27 14 6 5 67 . 10 32 60 60 32 10 6 204 . 19 55 129 140 129 55 19 7 546 . 28 94 218 294 294 218 94 28 8 1268 .44 140 363 506 608 506 363 140 44 9 2714
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A248011.
Programs
-
Maple
b := proc (n::integer, k::integer)::integer; (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)/96; end proc; for j to 10000 do a := 0; for k from j by -1 to 1 do n := j-k+1; a := a+b(n, k) end do; printf("%d, ", a) end do;
Formula
Empirically, a(n) = (2*n^7 + 14*n^6 + 14*n^5 + 70*n^4 - 77*n^3 - 399*n^2 + 61*n + 105 - 105*(-1)^n - 35*n^3*(-1)^n - 105*n^2*(-1)^n + 35*n*(-1)^n)/6720.
Empirical g.f.: -x^3*(x^2+1)*(x^4-6*x^2-4*x-3) / ((x-1)^8*(x+1)^4). - Colin Barker, Apr 06 2015
Extensions
Terms corrected and extended by Christopher Hunt Gribble, Apr 02 2015