cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248016 Sum over each antidiagonal of A248011.

Original entry on oeis.org

0, 0, 3, 16, 67, 204, 546, 1268, 2714, 5348, 9965, 17580, 29781, 48520, 76660, 117624, 176196, 257976, 370503, 522456, 725175, 991540, 1337974, 1782924, 2349438, 3063164, 3955601, 5061524, 6423017, 8086224, 10106280, 12543280, 15468232, 18958128, 23103051, 28000224, 33762411, 40510812, 48384906, 57534052
Offset: 1

Views

Author

Keywords

Examples

			a(1..9) are formed as follows:
.             Antidiagonals of A248011                n  a(n)
.                         0                            1     0
.                      0     0                         2     0
.                   1     1     1                      3     3
.                2     6     6     2                   4    16
.             6    14    27    14     6                5    67
.         10    32    60    60    32    10             6   204
.      19    55   129   140   129    55    19          7   546
.   28    94   218   294   294   218    94    28       8  1268
.44   140   363   506   608   506   363   140    44    9  2714
		

Crossrefs

Cf. A248011.

Programs

  • Maple
    b := proc (n::integer, k::integer)::integer;
    (4*k^3*n^3 - 12*k^2*n^2 + 2*k^3 + 6*k^2*n + 6*k*n^2 + 2*n^3 - 12*k^2 + 11*k*n - 12*n^2 + 4*k + 4*n - 3 - (2*k^3 + 6*k^2*n - 12*k^2 + 3*k*n + 4*k - 3)*(-1)^n - (6*k*n^2 + 2*n^3 + 3*k*n - 12*n^2 + 4*n - 3)*(-1)^k + (3*k*n - 3)*(-1)^k*(-1)^n)/96;
    end proc;
    for j to 10000 do
        a := 0;
        for k from j by -1 to 1 do
           n := j-k+1;
           a := a+b(n, k)
        end do;
        printf("%d, ", a)
    end do;

Formula

Empirically, a(n) = (2*n^7 + 14*n^6 + 14*n^5 + 70*n^4 - 77*n^3 - 399*n^2 + 61*n + 105 - 105*(-1)^n - 35*n^3*(-1)^n - 105*n^2*(-1)^n + 35*n*(-1)^n)/6720.
Empirical g.f.: -x^3*(x^2+1)*(x^4-6*x^2-4*x-3) / ((x-1)^8*(x+1)^4). - Colin Barker, Apr 06 2015

Extensions

Terms corrected and extended by Christopher Hunt Gribble, Apr 02 2015