cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248025 Lexicographically earliest permutation of the positive integers such that the first digit of a(n+1) is the digital root of a(n).

This page as a plain text file.
%I A248025 #19 Dec 23 2024 14:53:44
%S A248025 1,10,11,2,20,21,3,30,31,4,40,41,5,50,51,6,60,61,7,70,71,8,80,81,9,90,
%T A248025 91,12,32,52,72,92,22,42,62,82,13,43,73,14,53,83,23,54,93,33,63,94,44,
%U A248025 84,34,74,24,64,15,65,25,75,35,85,45,95,55,16,76,46,17,86,56,26,87,66,36,96
%N A248025 Lexicographically earliest permutation of the positive integers such that the first digit of a(n+1) is the digital root of a(n).
%H A248025 Reinhard Zumkeller, <a href="/A248025/b248025.txt">Table of n, a(n) for n = 1..10000</a>
%H A248025 E. Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-September/013711.html">Fun and quick permutation (with a digital root)</a>, SeqFan list, Sep 29 2014.
%H A248025 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%t A248025 Nest[Append[#, Block[{k = 1, r = Mod[#[[-1]], 9] + 9 Boole[Mod[#[[-1]], 9] == 0]}, While[Nand[FreeQ[#, k], IntegerDigits[k][[1]] == r], k++]; k]] &, {1}, 73] (* _Michael De Vlieger_, Oct 15 2020 *)
%o A248025 (PARI) a(n,S=1,u=2)={for(i=1,n,print1(S",");S=(S-1)%9+1;for(k=1,9e9,bittest(u,k)&&next;S==digits(k)[1]||next;u+=1<<S=k;break));S}
%o A248025 (Haskell)
%o A248025 import Data.List (delete)
%o A248025 a248025 n = a248025_list !! (n-1)
%o A248025 a248025_list = 1 : f 1 [2..] where
%o A248025   f x zs = g zs where
%o A248025     g (y:ys) = if a000030 y == a010888 x
%o A248025                then y : f y (delete y zs) else g ys
%o A248025 -- _Reinhard Zumkeller_, Sep 30 2014
%Y A248025 Cf. A010888 (digital root); similar sequences: A248024,...
%Y A248025 Cf. A247879 (inverse), A000030.
%K A248025 nonn,base
%O A248025 1,2
%A A248025 _Eric Angelini_ and _M. F. Hasler_, Sep 29 2014