cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248027 Sum over each antidiagonal of A248017.

This page as a plain text file.
%I A248027 #35 Oct 22 2018 01:41:48
%S A248027 0,0,0,4,69,554,3100,13288,47492,147050,407568,1030912,2419025,
%T A248027 5324684,11099416,22065120,42085344,77378556,137705904,237996060,
%U A248027 400624581,658434694,1058839380,1669118984,2583424948,3931632406,5890783808,8699293304,12674960961
%N A248027 Sum over each antidiagonal of A248017.
%H A248027 Christopher Hunt Gribble, <a href="/A248027/b248027.txt">Table of n, a(n) for n = 1..10000</a>
%F A248027 Empirically, a(n) = (2*n^11 + 22*n^10 + 22*n^9 - 462*n^8 - 1122*n^7 + 7392*n^6 - 3509*n^5 - 25663*n^4 + 48950*n^3 - 22869*n^2 - 65133*n + 41580 - (693*n^5 + 3465*n^4 - 6930*n^3 - 45045*n^2 + 27027*n + 41580)*(-1)^n)/2661120.
%F A248027 Empirical g.f.: -x^4*(x^11 + 2*x^10 - 7*x^9 - 10*x^8 - 28*x^7 - 170*x^6 - 484*x^5 - 538*x^4 - 461*x^3 - 176*x^2 - 45*x - 4) / ((x - 1)^12*(x + 1)^6). - _Colin Barker_, Apr 21 2015
%e A248027 a(1)..a(9) are formed as follows:
%e A248027 .             Antidiagonals of A248017                 n   a(n)
%e A248027 .                         0                             1      0
%e A248027 .                      0     0                          2      0
%e A248027 .                   0     0     0                       3      0
%e A248027 .                0     2     2     0                    4      4
%e A248027 .             1    14    39    14     1                 5     69
%e A248027 .          3    66   208   208    66     3              6    554
%e A248027 .      12   198   794  1092   794   198    12           7   3100
%e A248027 .   28   508  2196  3912  3912  2196   508    28        8  13288
%e A248027 .66  1092  5231 10626 13462 10626  5231  1092    66     9  47492
%p A248027 b := proc (n::integer, k::integer)::integer;
%p A248027   (4*k^5*n^5 - 40*k^4*n^4 + 140*k^3*n^3 + 2*k^5 + 20*k^4*n
%p A248027    + 30*k^3*n^2 + 30*k^2*n^3 + 20*k*n^4 + 2*n^5 - 40*k^4
%p A248027    - 120*k^3*n - 185*k^2*n^2 - 120*k*n^3 - 40*n^4 + 160*k^3
%p A248027    - 20*k^2*n - 20*k*n^2 + 160*n^3 - 80*k^2 + 36*k*n - 80*n^2
%p A248027    + 48*k + 48*n + 45
%p A248027    + (- 30*k^2*n^3 - 20*k*n^4 - 2*n^5 - 15*k^2*n^2 + 120*k*n^3
%p A248027       + 40*n^4 + 20*k*n^2 - 160*n^3 + 60*k*n + 80*n^2 - 48*n
%p A248027       - 45)*(-1)^k
%p A248027    + (- 2*k^5 - 20*k^4*n - 30*k^3*n^2 + 40*k^4 + 120*k^3*n
%p A248027       - 15*k^2*n^2 - 160*k^3 + 20*k^2*n + 80*k^2 + 60*k*n - 48*k
%p A248027       - 45)*(-1)^n
%p A248027    + (15*k^2*n^2 - 60*k*n + 45)*(-1)^k*(-1)^n)/1920;
%p A248027 end proc;
%p A248027 for j to 10000 do
%p A248027   a := 0;
%p A248027   for k from j by -1 to 1 do
%p A248027     n := j-k+1;
%p A248027     a := a+b(n, k);
%p A248027   end do;
%p A248027 printf("%d, ", a);
%p A248027 end do;
%Y A248027 Cf. A248017.
%K A248027 nonn
%O A248027 1,4
%A A248027 _Christopher Hunt Gribble_, Sep 30 2014
%E A248027 Terms corrected and extended by _Christopher Hunt Gribble_, Apr 17 2015