This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248028 #11 Jan 22 2018 03:20:27 %S A248028 1,1,2,8,65,957,22512,773838,36561289,2271696241,179538792358, %T A248028 17584290721868,2090031277816649,296326507395472205, %U A248028 49400463740287289892,9566059122999739401954,2129221864475839211318769,539805407803681202368358785,154636541536285163968515043306,49702496963149041682740769491568 %N A248028 a(n) = Sum_{k=0..n} |Stirling1(n, k)|*(n-k)! for n>=0. %C A248028 Compare to A007840(n) = Sum_{k=0..n} |Stirling1(n, k)|*k!, which equals the number of factorizations of permutations of n letters into ordered cycles. %C A248028 For n > 1, a(n) is equal to the permanent of the (n-1) X (n-1) matrix in which the (i, j)-entry is equal to delta(i, j) + i, letting delta denote the Kronecker delta function, as illustrated in the below example. - _John M. Campbell_, Jan 21 2018 %F A248028 a(n) ~ ((n-1)!)^2. - _Vaclav Kotesovec_, Sep 30 2014 %e A248028 For example, the (5-1) X (5-1) matrix of the form indicated above is equal to %e A248028 [2 1 1 1] %e A248028 [2 3 2 2] %e A248028 [3 3 4 3] %e A248028 [4 4 4 5] %e A248028 and the permanent of the above matrix is equal to 957 = a(5). - _John M. Campbell_, Jan 21 2018 %t A248028 Table[Sum[Abs[StirlingS1[n,k]]*(n-k)!,{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 30 2014 *) %o A248028 (PARI) {Stirling1(n, k)=if(n==0, 1, n!*polcoeff(binomial(x, n), k))} %o A248028 {a(n)=sum(k=0, n, (-1)^(n-k)*Stirling1(n, k)*(n-k)!)} %o A248028 for(n=0,20,print1(a(n),", ")) %Y A248028 Cf. A008275 (Stirling1 numbers). %K A248028 nonn %O A248028 0,3 %A A248028 _Paul D. Hanna_, Sep 29 2014