A248042
Denominators of approximation to 2^(1/3) by Newton's method after n iterations.
Original entry on oeis.org
1, 3, 72, 894348, 1703358734191174242
Offset: 0
Approximations to 2^(1/3):
n = 1: 4/3 = 1.33333...; error = 0.07341...
n = 2: 91/72 = 1.26388...; error = 0.00396...
n = 3: 1126819/894348 = 1.25993...; error = 0.00001...
...
A253690
Numerators of approximation to 2^(1/3) by Halley's method after n iterations.
Original entry on oeis.org
1, 5, 635, 487771523185, 169819290704671870437365746682881808313592465345
Offset: 0
Approximations to 2^(1/3):
n = 1: 5/4 = 1.25; error = -0.00992104...
n = 2: 635/504 = 1.2599206...; error = -0.00000041...
n = 3: 487771523185/387144514512 = 1.2599210...; error = -3.001136... * 10^-20.
-
{a=1; b=1; print1(b, ", "); for(n=1, 5, x=a*(a^3+4*b^3); y=2*b*(a^3+b^3); a=x/gcd(x, y); b=y/gcd(x, y); print1(a, ", "))}
A253904
Denominators of approximation to 2^(1/3) by Halley's method after n iterations.
Original entry on oeis.org
1, 4, 504, 387144514512, 134785660354544802902690364367892668197456173472
Offset: 0
Approximations to 2^(1/3):
n = 1: 5/4 = 1.25; error = -0.00992104...
n = 2: 635/504 = 1.2599206...; error = -0.00000041...
n = 3: 487771523185/387144514512 = 1.2599210...; error = -3.001136... * 10^-20.
-
{a=1; b=1; print1(b, ", "); for(n=1, 5, x=a*(a^3+4*b^3); y=2*b*(a^3+b^3); a=x/gcd(x, y); b=y/gcd(x, y); print1(b, ", "))}
Showing 1-3 of 3 results.
Comments