A248044 Least positive integer m such that m + n divides pi(m)^2 + pi(n)^2, where pi(x) denotes the number of primes not exceeding x.
1, 3, 1, 4, 12, 11, 1, 8, 7, 16, 2, 5, 26, 25, 24, 4, 228, 227, 46, 45, 44, 43, 16, 6, 5, 1, 27, 26, 45, 44, 12526, 12525, 12524, 12523, 2970, 502, 351, 350, 46, 45, 236, 235, 10, 9, 8, 4, 1078, 1077, 576, 575, 574, 198, 63, 62, 61, 176, 16, 10, 362, 70
Offset: 1
Examples
a(5) = 12 since 12 + 5 = 17 divides pi(12)^2 + pi(5)^2 = 5^2 + 3^2 = 34.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1387 from Zhi-Wei Sun)
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
Programs
-
Mathematica
Do[m=1;Label[aa];If[Mod[PrimePi[m]^2+PrimePi[n]^2,m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
Comments