This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248055 #8 Oct 04 2014 04:42:37 %S A248055 1,5,34,265,2219,19490,177119,1651405,15707416,151791375,1485814989, %T A248055 14697965770,146673432721,1474490991635,14915914368896, %U A248055 151701887367585,1550083118902041,15903333300738320,163749905809635219,1691449817705302875,17521670544878571584,181972459046153912945 %N A248055 G.f.: Sum_{n>=0} x^n / (1-4*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k]. %F A248055 G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^(n-k) * x^k]. %F A248055 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 4^(k-j) * x^j. %F A248055 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 4^(n-k) * Sum_{j=0..k} C(k,j)^2 * x^j. %F A248055 a(n) = Sum_{k=0..[n/2]} Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 4^j. %F A248055 a(n) ~ (11+3*sqrt(13))^(n+1) / (Pi * n * 2^(n+7/2)). - _Vaclav Kotesovec_, Oct 04 2014 %e A248055 G.f.: A(x) = 1 + 5*x + 34*x^2 + 265*x^3 + 2219*x^4 + 19490*x^5 +... %t A248055 Table[Sum[Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 4^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 04 2014 *) %o A248055 (PARI) /* By definition: */ %o A248055 {a(n,p=4,q=1)=local(A=1); A=sum(m=0, n, x^m/(1-p*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * q^k * x^k) * sum(k=0, m, binomial(m,k)^2 * p^k * x^k) +x*O(x^n)); polcoeff(A, n)} %o A248055 for(n=0, 25, print1(a(n,4,1), ", ")) %o A248055 (PARI) /* By a binomial identity: */ %o A248055 {a(n,p=4,q=1)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * p^(m-k) * q^k * x^k) * sum(k=0, m, binomial(m, k)^2 * x^k) +x*O(x^n)); polcoeff(A, n)} %o A248055 for(n=0, 25, print1(a(n,4,1), ", ")) %o A248055 (PARI) /* By a binomial identity: */ %o A248055 {a(n,p=4,q=1)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * p^(k-j) * q^j * x^j)+x*O(x^n))), n)} %o A248055 for(n=0, 25, print1(a(n,4,1), ", ")) %o A248055 (PARI) /* By a binomial identity: */ %o A248055 {a(n,p=4,q=1)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * p^(m-k) * sum(j=0, k, binomial(k, j)^2 * q^j * x^j)+x*O(x^n))), n)} %o A248055 for(n=0, 25, print1(a(n,4,1), ", ")) %o A248055 (PARI) /* Formula for a(n): */ %o A248055 {a(n,p=4,q=1)=sum(k=0, n\2, sum(j=0, n-2*k, q^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * p^j))} %o A248055 for(n=0, 25, print1(a(n,4,1), ", ")) %Y A248055 Cf. A246510, A248053, A246423, A246455, A246056, A246813. %K A248055 nonn %O A248055 0,2 %A A248055 _Paul D. Hanna_, Sep 30 2014