This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248059 #27 Nov 30 2016 22:11:19 %S A248059 0,0,0,0,1,0,1,6,6,1,3,22,39,22,3,9,60,139,139,60,9,19,135,371,476, %T A248059 371,135,19,38,266,813,1253,1253,813,266,38,66,476,1574,2706,3254, %U A248059 2706,1574,476,66,110,792,2770,5199,6969,6969,5199,2770,792,110,170,1245 %N A248059 Table T(n,k), n>=1, k>=1, read by antidiagonals: T(n,k) = number of equivalence classes of ways of placing four 1 X 1 tiles in an n X k rectangle under all symmetry operations of the rectangle. %H A248059 Christopher Hunt Gribble, <a href="/A248059/b248059.txt">Table of n, a(n) for n = 1..9870</a> %F A248059 Empirically, %F A248059 T(n,k) = (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384; %F A248059 T(1,k) = sum(A005993(i-4),i=1,k) %F A248059 = sum((i-2)*(2*(i-3)*(i-1) + 3*(1-(-1)^(i-1)))/24, i=1,k); %F A248059 T(2,k) = A071239(k-1) = (k-1)*k*((k-1)^2+2)/6. %e A248059 T(n,k) for 1<=n<=9 and 1<=k<=9 is: %e A248059 k 1 2 3 4 5 6 7 8 9 ... %e A248059 n %e A248059 1 0 0 0 1 3 9 19 38 66 %e A248059 2 0 1 6 22 60 135 266 476 792 %e A248059 3 0 6 39 139 371 813 1574 2770 4554 %e A248059 4 1 22 139 476 1253 2706 5199 9080 14857 %e A248059 5 3 60 371 1253 3254 6969 13294 23102 37637 %e A248059 6 9 135 813 2706 6969 14841 28197 48852 79401 %e A248059 7 19 266 1574 5199 13294 28197 53381 92266 149645 %e A248059 8 38 476 2770 9080 23102 48852 92266 159216 257878 %e A248059 9 66 792 4554 14857 37637 79401 149645 257878 417156 %p A248059 b := proc (n::integer, k::integer)::integer; %p A248059 (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + (- 6*k*n + 9)*(-1)^k*(-1)^n)/384 %p A248059 end proc; %p A248059 seq(seq(b(n, k-n+1), n = 1 .. k), k = 1 .. 140); %Y A248059 Cf. A034851, A226048, A226290, A225812, A228022, A228165, A228166, A243866, A006918, A244306, A244307, A248011, A248016, A248060, A248017, A248027. %K A248059 tabl,nonn %O A248059 1,8 %A A248059 _Christopher Hunt Gribble_, Sep 30 2014 %E A248059 Terms corrected and extended by _Christopher Hunt Gribble_, Apr 06 2015