This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A248060 #29 Nov 23 2015 01:43:26 %S A248060 0,0,1,14,89,416,1526,4740,12898,31680,71527,150722,299571,566592, %T A248060 1026524,1791528,3025188,4961280,7926621,12370710,18901069,28327904, %U A248060 41716466,60451820,86313734,121567680,169068835,232386570,315945319,425191040,566777976,748786896 %N A248060 Sums over successive antidiagonals of A248059. %H A248060 Christopher Hunt Gribble, <a href="/A248060/b248060.txt">Table of n, a(n) for n = 1..10000</a> %F A248060 Empirically, a(n) = (2*n^9 + 18*n^8 + 18*n^7 - 210*n^6 + 588*n^5 + 672*n^4 - 3803*n^3 - 1425*n^2 + 3195*n + 945 + 315*n^3*(-1)^n + 945*n^2*(-1)^n - 315*n*(-1)^n - 945*(-1)^n)/120960. %F A248060 Empirical g.f.: x^3*(x^8-4*x^6+8*x^5+26*x^4+40*x^3+16*x^2+8*x+1) / ((x-1)^10*(x+1)^4). - _Colin Barker_, Apr 08 2015 %e A248060 a(1..9) are formed as follows: %e A248060 . Antidiagonals of A248059 n a(n) %e A248060 . 0 1 0 %e A248060 . 0 0 2 0 %e A248060 . 0 1 0 3 1 %e A248060 . 1 6 6 1 4 14 %e A248060 . 3 22 39 22 3 5 89 %e A248060 . 9 60 139 139 60 9 6 416 %e A248060 . 19 135 371 476 371 135 19 7 1526 %e A248060 . 38 266 813 1253 1253 813 266 38 8 4740 %e A248060 .66 476 1574 2706 3254 2706 1574 476 66 9 12898 %p A248060 b := proc (n::integer, k::integer)::integer; %p A248060 (4*k^4*n^4 - 24*k^3*n^3 + 2*k^4 + 12*k^3*n + 80*k^2*n^2 + %p A248060 12*k*n^3 + 2*n^4 - 24*k^3 - 24*k^2*n - 24*k*n^2 - 24*n^3 + %p A248060 40*k^2 - 102*k*n + 40*n^2 + 9 + (- 2*k^4 - 12*k^3*n + 24*k^3 + %p A248060 24*k^2*n - 40*k^2 + 6*k*n - 9)*(-1)^n + (- 12*k*n^3 - 2*n^4 + %p A248060 24*k*n^2 + 24*n^3 + 6*k*n - 40*n^2 - 9)*(-1)^k + %p A248060 (- 6*k*n + 9)*(-1)^k*(-1)^n)/384 %p A248060 end proc; %p A248060 for j to 40 do a := 0; %p A248060 for k from j by -1 to 1 do %p A248060 n := j-k+1; %p A248060 a := a+b(n, k); %p A248060 end do; %p A248060 printf("%d, ", a): %p A248060 end do: %Y A248060 Cf. A248059. %K A248060 nonn %O A248060 1,4 %A A248060 _Christopher Hunt Gribble_, Sep 30 2014 %E A248060 Terms corrected and extended by _Christopher Hunt Gribble_, Apr 06 2015