cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248076 Partial sums of the sum of the 5th powers of the divisors of n: Sum_{i=1..n} sigma_5(i).

This page as a plain text file.
%I A248076 #44 Oct 22 2023 00:35:16
%S A248076 1,34,278,1335,4461,12513,29321,63146,122439,225597,386649,644557,
%T A248076 1015851,1570515,2333259,3415660,4835518,6792187,9268287,12572469,
%U A248076 16673621,21988337,28424681,36677981,46446732,58699434,73107634,90873690,111384840,136555392
%N A248076 Partial sums of the sum of the 5th powers of the divisors of n: Sum_{i=1..n} sigma_5(i).
%H A248076 Seiichi Manyama, <a href="/A248076/b248076.txt">Table of n, a(n) for n = 1..10000</a>
%F A248076 a(n) = Sum_{i=1..n} sigma_5(i) = Sum_{i=1..n} A001160(i).
%F A248076 a(n) ~ Zeta(6) * n^6 / 6. - _Vaclav Kotesovec_, Sep 02 2018
%F A248076 a(n) ~ Pi^6 * n^6 / 5670. - _Vaclav Kotesovec_, Sep 02 2018
%F A248076 a(n) = Sum_{k=1..n} (Bernoulli(6, floor(1 + n/k)) - 1/42)/6, where Bernoulli(n,x) are the Bernoulli polynomials. - _Daniel Suteu_, Nov 07 2018
%F A248076 a(n) = Sum_{k=1..n} k^5 * floor(n/k). - _Daniel Suteu_, Nov 08 2018
%p A248076 with(numtheory): A248076:=n->add(sigma[5](i), i=1..n): seq(A248076(n), n=1..50);
%t A248076 Table[Sum[DivisorSigma[5, i], {i, n}], {n, 30}]
%t A248076 Accumulate[DivisorSigma[5, Range[30]]] (* _Vaclav Kotesovec_, Mar 30 2018 *)
%o A248076 (PARI) lista(nn) = vector(nn, n, sum(i=1, n, sigma(i, 5))) \\ _Michel Marcus_, Sep 30 2014
%o A248076 (Magma) [(&+[DivisorSigma(5,j): j in [1..n]]): n in [1..30]]; // _G. C. Greubel_, Nov 07 2018
%o A248076 (Python)
%o A248076 from math import isqrt
%o A248076 def A248076(n): return ((s:=isqrt(n))**3*(s+1)**2*(1-2*s*(s+1)) + sum((q:=n//k)*(12*k**5+q*(q**2*(q*(2*q+6)+5)-1)) for k in range(1,s+1)))//12 # _Chai Wah Wu_, Oct 21 2023
%Y A248076 Cf. A001160 (sigma_5).
%Y A248076 Cf. A024916: Partial sums of sigma(n)   = A000203(n).
%Y A248076 Cf. A064602: Partial sums of sigma_2(n) = A001157(n).
%Y A248076 Cf. A064603: Partial sums of sigma_3(n) = A001158(n).
%Y A248076 Cf. A064604: Partial sums of sigma_4(n) = A001159(n).
%K A248076 nonn,easy
%O A248076 1,2
%A A248076 _Wesley Ivan Hurt_, Sep 30 2014